2024-04-06 15:48:29 -07:00
|
|
|
from {{cookiecutter.module_name}}.data.dataset import MnistDataset
|
|
|
|
from {{cookiecutter.module_name}} import config
|
2024-04-06 13:02:31 -07:00
|
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
@pytest.mark.skip()
|
|
|
|
def test_init():
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def test_getitem():
|
|
|
|
train_set = MnistDataset(config.data.train_path)
|
|
|
|
|
|
|
|
assert train_set[0][1].item() == 5
|
|
|
|
repeated = 8
|
|
|
|
length = 28
|
|
|
|
channels = 1
|
|
|
|
assert train_set[0][0].shape == (channels, length * repeated, length * repeated)
|
|
|
|
|
|
|
|
@pytest.mark.skip()
|
|
|
|
def test_loader():
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
train_set = MnistDataset(config.data.train_path)
|
|
|
|
# train_loader = DataLoader(train_set, batch_size=config.training.batch_size, shuffle=True)
|
|
|
|
# for sample, target in train_loader:
|
|
|
|
# assert len(sample) == config.training.batch_size
|
|
|
|
# len(sample)
|
|
|
|
# len(target)
|