from torch.utils.data import DataLoader from torch.optim import AdamW from {{cookiecutter.module_name}}.training.runner import Runner from {{cookiecutter.module_name}} import config, logger def run(evaluate=False): # Initialize the training set and a dataloader to iterate over the dataset # train_set = GenericDataset() dataset = get_dataset(evaluate) dataloader = DataLoader(dataset, batch_size=config.training.batch_size, shuffle=True) model = get_model(name=config.model.name) optimizer = AdamW(model.parameters(), lr=config.training.learning_rate) # Create a runner that will handle runner = Runner( dataset=dataset, dataloader=dataloader, model=model, optimizer=optimizer, ) # Train the model for _ in range(config.training.epochs): # Run one loop of training and record the average loss for step in runner.step(): logger.info(f"{step}") def get_model(name='vgg11'): from {{cookiecutter.module_name}}.model.linear import DNN from {{cookiecutter.module_name}}.model.cnn import VGG11 if name == 'vgg11': return VGG11(config.data.in_channels, config.data.num_classes) else: # Create the model and optimizer and cast model to the appropriate GPU in_features, out_features = dataset.in_out_features() model = DNN(in_features, config.model.hidden_size, out_features) return model.to(config.training.device) def get_dataset(evaluate=False): # Usage from {{cookiecutter.module_name}}.data.dataset import MnistDataset from torchvision import transforms csv_file_path = config.data.train_path if not evaluate else config.data.test_path transform = transforms.Compose([ transforms.ToTensor(), # Converts a PIL Image or numpy.ndarray to a FloatTensor and scales the image's pixel intensity values to the [0., 1.] range transforms.Normalize((0.1307,), (0.3081,)) # Normalize using the mean and std specific to MNIST ]) dataset = MnistDataset(csv_file_path) return dataset