ml_pipeline_cookiecutter/{{cookiecutter.project_slug}}/{{cookiecutter.module_name}}/notebooks/main.ipynb

86 lines
1.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "9f86d9e7-ca94-4dce-b86d-7ddb261f4e25",
"metadata": {},
"outputs": [],
"source": [
"# Now you can import your package\n",
"import ml_pipeline"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6ba8b629-82db-487f-acbf-2ca20feee7e2",
"metadata": {},
"outputs": [],
"source": [
"from ml_pipeline.data.dataset import MnistDataset"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8fb6c881-46ba-40e5-b837-c507c5bfae21",
"metadata": {},
"outputs": [],
"source": [
"from ml_pipeline import config"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c8ce7920-c056-44ac-93df-b25bae870592",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<ConfigurationSet: 0x7fcf70fc1a50>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"config"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "83293ef7-37b3-452f-8de5-13bee633d099",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}