
Computer Science 477

Inducing Modular Rules for 
Classification

Lecture 16

1



Conversion to Rules

 IF SoftEng = A AND Project = 
B AND ARIN = A AND CSA = 
A THEN Class = FIRST

 IF SoftEng = A AND Project = 
A THEN Class = FIRST

 IF SoftEng = A AND Project = 
B AND ARIN = A AND CSA = 
B THEN Class = SECOND

 IF SoftEng = A AND Project = 
B AND ARIN = B THEN Class 
= SECOND

 IF SoftEng = B THEN Class = 
SECOND

2



Rule Post-pruning

 Convert a decision tree to an equivalent set of 
rules

 Examine rule to simplify them

 Without any loss of (preferably with a gain in) 
predictive accuracy.

 For rule 

 IF SoftEng = A AND Project = B AND ARIN = 
A AND CSA = A THEN Class = FIRST

 Consider the four terms 

 ‘SoftEng = A’, ‘Project = B’, ‘ARIN = A’ and 
‘CSA = A’.

3



Term Elimination
 Need some criterion for whether removing a 

term from a ruleset increases or decreases 
classification accuracy.

 Suppose we have one.

 The term elimination process terminates when 
removing a term from a rule decreases 
classification accuracy.

 Needs three datasets

 Training, Pruning and Test

 Otherwise leads to overfitting

4



Conflict Resolution

 Bottom-up pruning method in Chapter 8 has virtue:

 Resulting structure still a decision tree.

 Might lead to test on ARIN with the single node 

→

5



Non-bottom-up Pruning
 Suppose in rule pruning, remove the link corresponding 

to ‘SoftEng’ = A

 No longer a tree

 Two disconnected trees

→

6



Rule Reduction
 First four rules have 

changed.

 IF Project = B AND ARIN = A 
AND CSA = A THEN Class = 
FIRST

 IF Project = A THEN Class = 
FIRST

 IF Project = B AND ARIN = A 
AND CSA = B

 THEN Class = SECOND

 IF Project = B AND ARIN = B 
THEN Class = SECOND

 IF SoftEng = B THEN Class = 
SECOND

7

 IF SoftEng = A AND Project = 
B AND ARIN = A AND CSA = 
A THEN Class = FIRST

 IF SoftEng = A AND Project = 
A THEN Class = FIRST

 IF SoftEng = A AND Project = 
B AND ARIN = A AND CSA = 
B THEN Class = SECOND

 IF SoftEng = A AND Project = 
B AND ARIN = B THEN Class 
= SECOND

 IF SoftEng = B THEN Class = 
SECOND



Consequence

 Rule fires if its condition part is satisfied for a given 
instance. 

 A set of rules derived directly from a tree structure 

 Only one rule that can fire for any instance

 Suppose an instance:

 SoftEng=B, Project=A, ARIN=A and CSA=A,

 Both rules fire:

 IF Project = B AND ARIN = A AND CSA = A THEN 
Class = FIRST AND CSA = B THEN Class = 
SECOND

 IF Project = B AND ARIN = B THEN Class = SECOND

8



Another Example – Another Dataset
 IF x = 4 THEN Class = a

 IF y = 2 THEN Class = b

 What if, for an instance, x=4, y=2

 More elaborately:

 IF w = 9 and k = 5 THEN Class = b

 IF x = 4 THEN Class = a

 IF y = 2 THEN Class = b

 IF z = 6 and m = 47 THEN Class = b

 Instance:

 w = 9, k = 5, x = 4, y = 2, z = 6 and m = 47

 One rule gives class a

 The other three give b

9



Strategies for Conflict Resolution
 ‘Majority voting’ (e.g. there are three rules predicting class b and 

only one predicting class a, so choose class b)

 Giving priority to certain types of rule or classification (e.g. rules with 
a small number of terms or predicting a rare classification might 
have a higher weighting than other rules in the voting)

 Using a measure of the ‘interestingness’ of each rule give priority to 
the most interesting rule.

 Of which more anon 

 Most conflict resolution strategies require the condition that all the 
rules to be tested for each unseen instance, so that all the rules that 
fire are known before the strategy is applied. 

 With trees one need only work through the rules generated from a 
decision tree until the first one fires (as we know no others can).

 Possibly dispense with decision tree generation, proceed directly to 
rules.

10



Problems with Decision Trees

 Rule 1: IF a = 1 AND b = 1 THEN Class = 1

 Rule 2: IF c = 1 AND d = 1 THEN Class =1

 Suppose that Rules 1 and 2 cover all instances of Class 1 
and all other instances are of Class 2. 

 These two rules cannot be represented by a single decision 
tree 

 The root node of the tree must split on a single attribute, 
and

 No attribute which is common to both rules. 

 Simplest decision tree necessarily adds an extra term to 
one of the rules

 Would in turn require at least one extra rule to cover 
instances excluded by the addition of that extra term. 

11



Converting to a decision tree
 IF a = 1 AND b = 1 THEN Class = 1

 IF a = 1 AND b = 2 AND c = 1 AND d = 1 THEN Class = 1

 IF a = 1 AND b = 3 AND c = 1 AND d = 1 THEN Class = 1

 IF a = 2 AND c = 1 AND d = 1 THEN Class = 1

12



Problems with Decision Trees

 Trees branch on a single attribute

 Can lead to overfitting

 Demands that values of all attributes known for 
all instances

 Medical context

 Require tests high in cost

 Or risk

 Induce rules directly from data

 Not mediated by decision tree

13



Prism Algorithm

 The aim is to induce modular classification rules directly from 
the training set. 

 Assumes that all the attributes are categorical. 

 When there are continuous attributes they can first be 
converted to categorical ones

 Algorithm can be extended to deal with continuous 
attributes in much the same way as was described for 
TDIDT

 Generates the rules concluding each of the possible classes 
in turn. 

 Each rule is generated term by term, with each term of the 
form ‘attribute = value’. 

 The attribute/value pair added at each step is chosen to 
maximize the probability of the target ‘outcome class’.

14



Prism Algorithm
 For each classification (class = i) in turn and starting with the 

complete training set each time:

 1. Calculate the probability that class = i for each 
attribute/value pair.

 2. Select the pair with the largest probability and create a 
subset of the training set comprising all the instances with the 
selected attribute/value combination (for all classifications).

 3. Repeat 1 and 2 for this subset until a subset is reached that 
contains only instances of class i. 

 The induced rule is then the conjunction of all the 
attribute/value pairs selected.

 4. Remove all instances covered by this rule from the training 
set.

 Repeat 1–4 until all instances of class i have been removed

15



Lens24 Dataset

 Comprises 24 instances

16



Calculate probability: class = i for attribute/value pairs

 Probabilities for class 1:

 Maximum probability

 astig = 2 or tears = 2

 Choose astig = 2

 Arbitrarily

 Rule thus far:

 IF astig = 2 … then class = 1

17



Subsetting the Dataset

 All the instances where asig = 2

 Subset covered by incomplete rule
 astig = 2

18



Attribute/value pairs for subset

 Calculate probabilities for subset 

 Not involving astig

 Rule thus far

 IF astig = 2 and tears = 2 THEN class = 1

19



Subset of Training Set Covered

 Items covered by rule:

 Every instance where astig = 2 and tears = 2 

 Class 1

 Remove these instances only from the training 
set

20



Calculate Probabilities

 Remaining classes are age and specRx

 Frequency of attribute value pairs for class = 1

 Incomplete rule thus far:

 IF astig = 2 and tears = 2 and age = 1 THEN 
class = 1

21



Check Incomplete Rule

 Subset covered by incomplete rule:

 All instances are class one

 So rule is final

22



Continuing
 Remove two instances covered by first final rule

 Leaves 22 instances

 Attribute/value probabilities for class 1

 Maximum when astig = 2 and tears = 2

 Chose astig = 2

 Arbitrarily

23



Elaborate rule

 Incomplete rule

 IF astig = 2 THEN class = 1

 Subset of training set covered:

24



In-class Exercise

 Current training set:

25



Modifications of Prism Algorithm

 In case of ties

 The basic algorithm can be improved slightly 
by choosing between attribute/value pairs 
which have equal probability not arbitrarily as 
above

 Taking the one with the highest total 
frequency

26



Clashes in Training Data
 Clashes in Training Date

 Step 3 or original algorithm

 Repeat 1 and 2 for this subset until a subset is 
reached that contains only instances of class i.

 Add: ‘or a subset is reached which contains instances of 
more than one class, although values of all the attributes 
have already been used in creating the subset’

 Majority class does not fit directly into the Prism 
framework.

27



Clashes

 If a clash occurs while generating the rules 
for class i:

 1. Determine the majority class for the 
subset of instances in the clash set.

 2. If this majority class is class i, then 
complete the induced rule by assigning all 
the instances in the clash set to class i. 

 If not, discard the rule.

28



Resolving Clashes

 Where you have mixed leaf but nor more attributes:

 If a clash occurs while generating the rules for class i:

 1. Determine the majority class for the subset of 
instances in the clash set.

 2(a). If this majority class is class i, then complete the 
induced rule by assigning all the instances in the clash 
set to class i. 

 2(b). If not, discard the rule.

29



Comparing Prism with TDIDT

 “The experiments presented here suggest that the Prism algorithm 
for generating modular rules gives classification rules which are at 
least as good as those obtained from the widely used TDIDT 
algorithm.”

 Generally fewer rules with fewer terms per rule, which is likely to aid 
their comprehensibility to domain experts and users. 

 This result would seem to apply even more strongly when there is 
noise in the training set. 

 Classification accuracy on unseen test data - there appears to be 
little to choose between the two algorithms for noise-free datasets, 
including ones with a significant proportion of clash instances in the 
training set. 

 The main difference is that Prism generally has a preference for 
leaving a test instance as ‘unclassified’ rather than giving it a wrong 
classification.

30



Rules

 What about rules of the form?

 If att1 = a or att2 = b, then class=I

 Short exercise by the end of the day.

31


