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Hypothesis
Political polarization is rising, and news articles are a

proxy measure.
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Why might we expect this?
Mostly anecdotal experience.

Evidence is mixed in the literature , , .1 2 3

Our goal is whether, not why.
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Sub-hypothesis
• The polarization is not evenly distributed across

publishers.
• The polarization is not evenly distributed across

political specturm.
• The polarization increases near elections.
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Sub-sub-hypothesis
• Similarly polarized publishers link to each other.
• 'Mainstream' media uses more neutral titles.

7.2



Sub-sub-hypothesis
• Similarly polarized publishers link to each other.
• 'Mainstream' media uses more neutral titles.
• Highly polarized publications don't last as long.
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• Memeorandum: 
• AllSides: 
• HuggingFace: 
• ChatGPT: 
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Memeorandum
• News aggregation site.
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Memeorandum
• News aggregation site.
• Was really famous before Google News.
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Memeorandum
• News aggregation site.
• Was really famous before Google News.
• Still aggregates sites today.
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Memeorandum
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Memeorandum
• I still use it.
• I like to read titles.
• Publishers block bots.
• Simple html to parse.
• Headlines from 2006 forward.
• Automated, not editorialized.
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AllSides
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AllSides
• Rates publications as left, center or right.

16.1



AllSides
• Rates publications as left, center or right.
• Ratings combine:

• blind bias surveys.
• editorial reviews.
• third party research.
• community voting.
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AllSides
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AllSides
• One of the only bias apis.
• Ordinal ratings [-2: very left, 2: very right].
• Covers 1400 publishers + some blog and

authors.
• Easy format and semi-complete data.
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HuggingFace
• Deep learning library.
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HuggingFace
• Deep learning library.
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HuggingFace
• Deep learning library.
• Lots of pretrained models.
• Easy, off the shelf word/sentence embeddings

and text classification models.

20.3



HuggingFace
• Language models are .
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HuggingFace
• Language models are .HOT
• Literally 5 lines of python.
• The dataset needed more features.
• Testing different model performance was easy.
• Lots of pretrained classification tasks.
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Data Collection
Stories

day = timedelta(days=1)
cur = date(2005, 10, 1)
end = date.today()
while cur <= end:
    cur = cur + day
    save_as = output_dir / f"{cur.strftime('%y-%m-%d')}.html"
    url = f"https://www.memeorandum.com/{cur.strftime('%y%m%d')}/
    r = requests.get(url)
    with open(save_as, 'w') as f:
        f.write(r.text)
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Data Collection
Bias hard

...
bias_html = DATA_DIR / 'allsides.html'
parser = etree.HTMLParser()
tree = etree.parse(str(bias_html), parser)
root = tree.getroot()
rows = root.xpath('//table[contains(@class,"views-table")]/tbody/

ratings = []
for row in rows:
    rating = dict()
    ...
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Data Collection
Bias easy
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Data Collection
Embeddings

# table = ...
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
model = AutoModel.from_pretrained("roberta-base")

for chunk in table:
    tokens = tokenizer(chunk, add_special_tokens = True, truncati
    outputs = model(**tokens)
    embeddings = outputs.last_hidden_state.detach().numpy()
    ...
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Data Collection
Classification Embeddings

...
outputs = model(**tokens)[0].detach().numpy()
scores = 1 / (1 + np.exp(-outputs))  # Sigmoid
class_ids = np.argmax(scores, axis=1)
for i, class_id in enumerate(class_ids):
    results.append({"story_id": ids[i], "label" : model.config.id
...

27



Data Structures
Stories

28



Data Structures
Stories

29



Data Structures
Stories

• Top level stories.
• title, author, publisher, url, date.

29.1



Data Structures
Stories

• Top level stories.
• title, author, publisher, url, date.

• Related discussion.
• publisher, url.
• uses 'parent' story as a source.

29.2



Data Structures
Stories

• Top level stories.
• title, author, publisher, url, date.

• Related discussion.
• publisher, url.
• uses 'parent' story as a source.

• Story stream changes constantly (dedup.
required).
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Data Structures
Stories

metric value

total stories 299714

total related 960111

publishers 7031

authors 34346

max year 2023

min year 2005
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Data Selection
Stories

• Clip the first and last full year of stories.
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Data Selection
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Data Selection
Stories

• Clip the first and last full year of stories.
• Remove duplicate stories (big stories span

multiple days).
• Convert urls to tld to link to publishers.
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Data Selection
Publishers

• Combine subdomains of stories.
• blog.washingtonpost.com and

washingtonpost.com are considered the
same publisher.

• This could be bad. For example:
opinion.wsj.com != wsj.com.
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Data Selection
Publishers

• Combine subdomains of stories.
• blog.washingtonpost.com and

washingtonpost.com are considered the
same publisher.

• This could be bad. For example:
opinion.wsj.com != wsj.com.

• Find common name of publisher.
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Data Selection
Related

• Select only stories with publishers whose story
had been a 'parent' ('original publishers').

• Eliminates small blogs and non-original
news.
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Data Selection
Related

• Select only stories with publishers whose story
had been a 'parent' ('original publishers').

• Eliminates small blogs and non-original
news.

• Eliminate publishers without links to original
publishers.

• Eliminate silo'ed publications.
• Link matrix is square and low'ish

dimensional.
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Data Selection
Post Process

metric value

total stories 251553

total related 815183

publishers 223

authors 23809

max year 2022

min year 2006
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Descriptive Stats
Top Publishers
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Descriptive Stats
Articles Per Year
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Descriptive Stats
Common TLDs
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Data Structures
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• agree/disagree vote by community.
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Data Structures
Bias

• Per publisher.
• name,
• label/ordinal value.
• agree/disagree vote by community.

• Name could be semi-automatically joined to
stories.
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Data Selection
Bias

• Keep all ratings.
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• Started with 'jaro winkler similarity' then
manually from there (look up Named Entity
Recognition).
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Data Selection
Bias

• Keep all ratings.
• Join datasets on publisher name.

• Started with 'jaro winkler similarity' then
manually from there (look up Named Entity
Recognition).

• Use numeric values.
• [left: -2, left-center: -1, ...].
• Possibly scale ordinal based on

agree/disagree ratio.
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Data
Bias
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Data Structures
Embeddings

• Per story title.
• sentence embedding (n, 384) - BERT.
• sentiment classification (n, 1) - RoBERTa

base.
• emotional classification (n, 1) - RoBERTa

Go-Emotions.
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Data Structures
Embeddings

• Per story title.
• sentence embedding (n, 384) - BERT.
• sentiment classification (n, 1) - RoBERTa

base.
• emotional classification (n, 1) - RoBERTa

Go-Emotions.
• ~ 1 hour of inference time to map story titles and

descriptions.
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Data Selection
Embeddings

• Word embeddings were too complicated.
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Data Selection
Embeddings

• Word embeddings were too complicated.
• Kept argmax of classification prediction ([0.82,

0.18] -> LABEL_0).
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Data Selection
Embeddings

• Word embeddings were too complicated.
• Kept argmax of classification prediction ([0.82,

0.18] -> LABEL_0).
• For publisher based analysis, averaged sentence

embeddings for all stories.
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Data
Embeddings

label stories publishers

positive 87830 223

negative 163723 223
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Data
Embeddings

label stories publishers

neutral 124257 223

anger 34124 223

fear 36756 223

sadness 27449 223

disgust 17939 222

surprise 5710 216
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Experiments
1. clustering on link similarity.
2. classification on link similarity.
3. classification on sentence embedding.
4. classification on sentiment analysis.
5. regression on emotional classification over time

and publication.
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Experiment 1
clustering on link similarity.
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Setup
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Experiment 1
Setup

• Create one-hot encoding of links between
publishers.

• Cluster the encoding.
• Expect similar publications in same cluster.
• Use PCA to visualize clusters.
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Experiment 1
One-hot Encoding

publisher nytimes wsj newsweek ...

nytimes 1 1 1 ...

wsj 1 1 0 ...

newsweek 0 0 1 ...

... ... ... ... ...
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Experiment 1
n-Hot Encoding

publisher nytimes wsj newsweek ...

nytimes 11 1 141 ...

wsj 1 31 0 ...

newsweek 0 0 1 ...

... ... ... ... ...
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Experiment 1
Normalized n-Hot Encoding

publisher nytimes wsj newsweek ...

nytimes 0 0.4 0.2 ...

wsj 0.2 0 0.4 ...

newsweek 0.0 0.0 0.0 ...

... ... ... ... ...
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Experiment 1
Elbow criterion
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Experiment 1
Comparing encoding schemes
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Experiment 1
Link Magnitude
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Experiment 1
Normalized
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Experiment 1
One-Hot
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Experiment 1
Discussion

• One-hot seems to reflect the right features.
• Found clusters, but meaning is arbitrary.

• map to PCA results nicely.
• Limitation: need the link encoding to cluster.

• Smaller publishers might not link very much.
• TODO: Association Rule Mining.

• 'Basket of goods' analysis to group
publishers.
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Experiment 2
classification on link similarity.
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Experiment 2
Setup
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• Reuse link encodings.
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Experiment 2
Setup
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• Join bias classifications.
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Experiment 2
Setup

• Create features:
• Publisher frequency.
• Reuse link encodings.

• Create classes:
• Join bias classifications.

• Train classifier.
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Experiment 2
Descriptive stats

metric value

publishers 1582

labels 6

left 482

center 711

right 369

agree range [0.0-1.0]
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Experiment 2
Discussion

• Link encodings (and their PCA) are useful.
• Labels are (sort of) separated and clustered.
• Creating them for smaller publishers is trivial.

• Hot diagonal confusion matrix is good.
• Need to link more publisher data to get good test

data.
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Experiment 2
Limitations

• Dependent on accurate rating.
• Ordinal ratings weren't available.
• Dependent on accurate joining across datasets.
• Entire publication is rated, not authors.
• Don't know what to do with community rating.
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classification on sentence embedding.
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Experiment 3
Setup

• Generate sentence embedding for each title.
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Experiment 3
Setup

• Generate sentence embedding for each title.
• Rerun PCA analysis on title embeddings.
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Experiment 3
Setup

• Generate sentence embedding for each title.
• Rerun PCA analysis on title embeddings.
• Use kNN classifier to map embedding features to

bias rating.
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Experiment 3
Embedding Steps

1. Extract titles.
2. Tokenize titles.
3. Pick pretrained language model.
4. Generate embeddings from tokens using model.
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Experiment 3
Tokens

The sentence:

"Spain, Land of 10 P.M. Dinners, Asks if It's Time to
Reset Clock"

Tokenizes to:
['[CLS]', 'spain', ',', 'land', 'of', '10', 'p', '.', 'm', '.', 
    'dinners', ',', 'asks', 'if', 'it', "'", 's', 'time', 'to', 
    'reset', 'clock', '[SEP]']
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Experiment 3
Tokens

The sentence:

"NPR/PBS NewsHour/Marist Poll Results and
Analysis"

Tokenizes to:
['[CLS]', 'npr', '/', 'pbs', 'news', '##ho', '##ur', '/', 'maris'
    '##t', 'poll', 'results', 'and', 'analysis', '[SEP]', '[PAD]'
    '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
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Experiment 3
Embeddings

• Using a BERT (Bidirectional Encoder
Representations from Transformers) based
model.

• Input: tokens.
• Output: dense vectors representing 'semantic

meaning' of tokens.

79



Experiment 3
Embeddings
The tokens:

Embeds to a vector (1, 384):

['[CLS]', 'npr', '/', 'pbs', 'news', '##ho', '##ur', '/', 'maris'
    '##t', 'poll', 'results', 'and', 'analysis', '[SEP]', '[PAD]'
    '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']

array([[ 0.12444635, -0.05962477, -0.00127911, ...,  0.13943022,
        -0.2552534 , -0.00238779],
       [ 0.01535596, -0.05933844, -0.0099495 , ...,  0.48110735,
         0.1370568 ,  0.3285091 ],
       [ 0.2831368 , -0.4200529 ,  0.10879617, ...,  0.15663117,
        -0.29782432,  0.4289513 ],
       ...,

80



Experiment 3
Results



81



Experiment 3
Results



82



Experiment 3
Results

83



Experiment 3
Discussion

84



Experiment 3
Discussion

• Embedding space is hard to condense with PCA.

84.1



Experiment 3
Discussion

• Embedding space is hard to condense with PCA.
• Maybe the classifier is learning to guess 'left-ish'?

84.2



Experiment 3
Discussion

• Embedding space is hard to condense with PCA.
• Maybe the classifier is learning to guess 'left-ish'?
• Does DL work better on sparse inputs?
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classification on sentiment analysis.
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time.
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Discussion

• Bump post Obama election for left and center.
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Experiment 4
Discussion

• Bump post Obama election for left and center.
• Dip pre Trump election for left and center.
• Right is all over the place - not enough data?
• Recency of election not a clear factor.
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Experiment 5
regression on title emotional expression.
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Experiment 5
Setup

• Use pretrained language classifier.
• Previously: Mapped reddit posts to tokens, to

embedding, to emotion labels.
• Predict: rate of neutral titles decreasing over

time.
• Classify:

• features: emotional labels
• labels: bias
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Discussion

• Neutral story titles dominate the dataset.
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Experiment 5
Discussion

• Neutral story titles dominate the dataset.
• Increase in stories published might explain most

of the trend.
• Far-right and far-left both became less neutral.
• Left-Center and right-center became more

emotional, but also neutral.
• Not a lot of movement overall.
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Hypothesis
• The polarization is not evenly distributed across

publishers. unproven
• The polarization is not evenly distributed across

political specturm. unproven
• The polarization increases near elections. false
• Similarly polarized publishers link to each other.

sorta
• 'Mainstream' media uses more neutral titles. true
• Highly polarized publications don't last as long.

untested
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Conclusion
• Article titles do not have a lot of predictive power.
• Mainstream, neutral publications dominate the

dataset.
• Link frequency, sentence embeddings, and

sentiments are useful features.
• A few questions remain.
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