Computer Science 477

Using Frequency Tables GINI Index and χ^2 for Attribute Selection

Lecture 7

Optimizing Entropy Calculations

- Calculating entropy laborious
- At each node a table of values such as needs to be calculated for every possible value of every categorical attribute.
- More efficient method: single table to be constructed for each categorical attribute at each node.

70	Value of	e	Class	
age	specRx	astig	tears	
1	1	1	1	3
1	1	1	2	2
1	1	2	1	3
1	1	2	2	1
1	2	1	1	3
1	2	1	2	2
1	2	2	1	3
1	2	2	2	1

Lens24 training data for age = 1

2	age = 1	age = 2	age = 3
Class 1	2	1	1
Class 2	2	2	1
Class 3	4	5	6
Column sum	8	8	8

Frequency table for age.

Number of occurrences for each class and each value of the attribute age.

Frequency Table

Entire lens24 data set.

	Class			
age	specRx	astig	tears	
1	1	1	1	3
1	1	1	2	2
1	1	2	1	3
1	1	2	2	1
1	2	1	1	3
1	2	1	2	2
1	2	2	1	3
1	2	2	2	1
2	1	1	1	3
2	1	1	2	2
2	1	2	1	3
2	1	2	2	1
2	2	1	1	3
2	2	1	2	2
2	2	2	1	3
2	2	2	2	3
3	1	1	1	3
3	1	1	2	3
3	1	2	1	3
3	1	2	2	1
3	2	1	1	3
3	2	1	2	2
3	2	2	1	3
3	2	2	2	3

f

	age = 1	age = 2	age = 3
Class 1	2	1	1
Class 2	2	2	1
Class 3	4	5	6
Column sum	8	8	8

Frequency table for age.

Calculation of Entropy

- Denote the total number of instances by N, so N = 24.
- *E_{new}*, average entropy of the training sets resulting from splitting on a specified attribute, calculated by forming a new sum.
- (1) For every non-zero value V in the main body of the table (part above the 'column sum' row), subtract V × log₂ V.
- (2) For every non-zero value *S* in the column sum row, add $S \times \log_2 S$.
- Divide total by *N*

5	age = 1	age = 2	age = 3
Class 1	2	1	1
Class 2	2	2	1
Class 3	4	5	6
Column sum	8	8	8

 $\begin{array}{l} -2 \cdot \log_2 2 - 1 \cdot \log_2 1 - 1 \cdot \log_2 1 \\ -2 \cdot \log_2 2 - 2 \cdot \log_2 2 - 1 \cdot \log_2 1 \\ -4 \cdot \log_2 4 - 5 \cdot \log_2 5 - 6 \cdot \log_2 6 \\ + 8 \cdot \log_2 8 + 8 \cdot \log_2 8 + 8 \cdot \log_2 8 \end{array}$

Calculating Entropy

- Using table of logs:
- $-2 \cdot \log_2 2 1 \cdot \log_2 1 1 \cdot \log_2 1 2 \cdot \log_2 2 2 \cdot \log_2 2 1 \cdot \log_2 1 4 \cdot \log_2 4 5 \cdot \log_2 5 6 \cdot \log_2 6 + 8 \cdot \log_2 8 + 8 \cdot \log_2 8 + 8 \cdot \log_2 8$
- Collecting terms, rearranging and dividing by 24:
- $(-3 \times 2 \cdot \log_2 2 3 \cdot \log_2 1 4 \cdot \log_2 4 5 \cdot \log_2 5 6 \cdot \log_2 6 + 3 \times 8 \cdot \log_2 8)/24$
- Useful table of logs.

- Giving: 1.2867 bits
 - Agrees with previous calculation

x	$\log_2 x$
1	0
2	1
3	1.5850
4	2
5	2.3219
6	2.5850
7	2.8074
8	3
9	3.1699
10	3.3219
11	3.4594
12	3.5850

Observation about Zero

- New method of computing entropy excludes empty classes from the summation.
- They correspond to zero entries in the body of the frequency table
- If a complete column of the frequency table is zero it means that the categorical attribute never takes one of its possible values at the node under consideration.

Gini Index of Diversity

- Another measure of node coherence
- Given *K* classes, with the probability of the *i*th class being p_i , the Gini Index is defined as $1 \sum_{i=1}^{n} p_i^2$
- Its smallest value is zero

When all the classifications are the same.

- Largest value $1 \frac{1}{K}$
 - Classes are evenly distributed between the instances

• The frequency of each class is 1/K.

Calculating the GINI index

- For each non-empty column, form the sum of the squares of the values in the body of the table and divide by the column sum.
- Add the values obtained for all the columns and divide by N
 - (the number of instances).
- Subtract the total from 1.

GINI Example Calculation

	age = 1	age = 2	age = 3
Class 1	2	1	1
Class 2	2	2	1
Class 3	4	5	6
Column sum	8	8	8

age = 1:
$$(2^2 + 2^2 + 4^2)/8 = 3$$

age = 2: $(1^2 + 2^2 + 5^2)/8 = 3.75$
age = 3: $(1^2 + 1^2 + 6^2)/8 = 4.75$

- Giving $GINI_{new} = 1 \frac{3+3.27+4.75}{24} = 0.5208$
- Reduction by splitting on age is 0.5382 0.5208 = 0.0174

Various GINI Calculations

- specRx: $G_{new} = 0.5278$, so the reduction is 0.5382 0.5278 = 0.0104
- astig: G_{new} = 0.4653, so the reduction is 0.5382
 0.4653 = 0.0729
- tears: $G_{new} = 0.3264$, so the reduction is 0.5382 - 0.3264 = 0.2118
- The attribute selected the one which gives the largest *reduction* in the value of the Gini Index, i.e. tears.
- This is the same attribute that was selected using entropy.

Implicit Bias

- Entropy has bias towards selecting attributes with a large number of values
- Example: a dataset about people that includes an attribute 'place of birth'
 - Classifies them (as responding to some medical treatment) 'well' 'badly' or 'not at all'.
- Do not expect place of birth to have significant effect on the classification.
- Information gain selection method will almost certainly choose it as the first attribute to split.
 - Generating one branch for each possible place of birth
 - Large branching factor at top of tree.
- The decision tree will be very large, with many branches (rules) with very low value for classification.

Gain Ratio for Attribute Selection

- The the average entropy of the training sets resulting from splitting on attribute age, 1.2867
- Entropy of the original training set $E_{start} = 1.3261$.
- Information Gain = $E_{start} E_{new} = 1.3261 1.2867 = 0.0394$
- Gain Ratio = Information Gain/Split Information
 - Split Information is a value based on the column sums
- Each non-zero column sum *s* contributes $-(s/N) \log_2(s/N)$ to the Split Information.
- Value of Split Information is

 $-(8/24) \log_2(8/24) - (8/24) \log_2(8/24) - (8/24) \log_2(8/24)$ = 1.5850

Gain Ratio = 0.0394/1.5850 = 0.0249

	age = 1	age = 2	age = 3
Class 1	2	1	1
Class 2	2	2	1
Class 3	4	5	6
Column sum	8	8	8

Properties of Split Information

- Split Information denominator in the Gain Ratio formula.
 - Higher the value of Split Information, the lower the Gain Ratio.
- Split Information depends on
 - The number of values a categorical attribute has
 - How uniformly those values are distributed.

Split Information Examples

- 32 instances
- Consider splitting on an attribute *a*

□ Values 1, 2, 3 and 4.

- 'Frequency' row in the tables below is the same as the column sum row tables
- Possibility 1 Single Attribute Value

; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	a = 1	a = 2	a = 3	a = 4
Frequency	32	0	0	0

• Split Information = $-(32/32) \times \log_2(32/32) = -\log_2 1 = 0$

Split Information Examples

	a = 1	a = 2	a = 3	a = 4
Frequency	16	16	0	0

• Split Information = $-(16/32) \times \log_2(16/32) - (16/32) \times \log_2(16/32) = -\log_2(1/2) = 1$

	a = 1	a = 2	a = 3	a = 4
Frequency	16	8	8	0

• Split Information = $-(16/32) \times \log_2(16/32) - 2 \times (8/32) \times \log_2(8/32) = -(1/2) \log_2(1/2) - (1/2) \log_2(1/4) = 0.5 + 1 = 1.5$

Split Information Examples

	a = 1	a = 2	a = 3	a = 4
Frequency	16	8	4	4

Split Information = -(16/32) × log2(16/32) - (8/32) × log2(8/32) - 2 × (4/32) × log2(4/32) = 0.5 + 0.5 + 0.75 = 1.75

$$a = 1$$
 $a = 2$
 $a = 3$
 $a = 4$

 Frequency
 8
 8
 8
 8

- Split Information = $-4 \times (8/32) \times \log_2(8/32) = -\log_2(1/4) = \log_2 4 = 2$
 - With *M* attribute values, each equally frequent, the Split Information is \log_2 (irrespective of the frequency value).

Gain Ratio and Branching

 Number of Rules Generated by Different Attribute Selection Criteria

Dataset	Excluding Entropy and Gain Ratio		Entropy	Gain Ratio
	most	least	- 111	
$contact_lenses$	42	26	16	17
lens24	21	9	9	9
chess	155	52	20	20
vote	116	40	34	33
monk1	89	53	52	<u>52</u>
monk2	142	109	<u>95</u>	96
monk3	77	43	28	25

- Gain ratio branches fewer
 - With exceptions
- In practice Information Gain more common than Gain Ratio
 - But C4.5 popular

- Splitting next on Z may result in an attribute value unrepresented
- If attribute Z has four possible values, but the branch at * offers three possibilities

Missing Branches

- If Z has four values, a, b, c, d new instance with X = 1, Y = 1, Z = d will be unclassified
- It may be considered preferable to leave an unseen instance unclassified rather than to classify it wrongly.
- Easy to provide a facility for any unclassified instances to be given a default classification
 - □ The largest class.

• Largest class such that X = 1, Y = 1 and Z = d