import click from dotenv import load_dotenv import data import plots @click.group() def cli(): ... if __name__ == "__main__": load_dotenv() # original bias ratings cli.add_command(data.scrape.download) cli.add_command(data.scrape.parse) cli.add_command(data.scrape.load) cli.add_command(data.scrape.normalize) cli.add_command(data.scrape.create_elections_table) cli.add_command(data.factcheck.parse_index) cli.add_command(data.factcheck.scrape) cli.add_command(data.links.create_table) cli.add_command(data.links.create_pca) cli.add_command(data.links.create_clusters) import word # cli.add_command(word.distance) # cli.add_command(word.train) cli.add_command(word.embed) cli.add_command(word.max_sequence) import bias cli.add_command(bias.parse) cli.add_command(bias.load) cli.add_command(bias.normalize) import mine cli.add_command(mine.embeddings) cli.add_command(mine.cluster) cli.add_command(mine.plot) import emotion cli.add_command(emotion.extract) cli.add_command(emotion.normalize) cli.add_command(emotion.analyze) cli.add_command(emotion.create_table) import sentence cli.add_command(sentence.embed) cli.add_command(sentence.create_avg_pca_table) from train import main as train_main cli.add_command(train_main.main) cli.add_command(plots.descriptive.articles_per_year) cli.add_command(plots.descriptive.distinct_publishers) cli.add_command(plots.descriptive.stories_per_publisher) cli.add_command(plots.descriptive.top_publishers) cli.add_command(plots.descriptive.common_tld) cli.add_command(plots.sentence.sentence_pca) cli.add_command(plots.sentence.avg_sentence_pca) cli.add_command(plots.emotion.emotion_over_time) cli.add_command(plots.emotion.emotion_regression) cli.add_command(plots.sentiment.over_time) cli.add_command(plots.sentiment.bias_over_time) cli.add_command(plots.sentiment.bias_vs_recent_winner) cli.add_command(plots.links.elbow) cli.add_command(plots.links.link_pca_clusters) cli.add_command(plots.classifier.pca_with_classes) cli()