Computer Science 477/577

More on Clustering

Lecture 17

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. **Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

 Start with clusters of individual points and a proximity matrix
 p1|p2|p3| p4|p5

Intermediate Situation

• After some merging steps, we have some clusters

Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

 C1
 C2
 C3
 C4
 C5

After Merging

The question is "How do we update the proximity matrix?"

- MIN
- MAX
- Group Average

- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MIN
- MAX
- Group Average

- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MIN
- MAX
- Group Average

- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids

- **Proximity Matrix**
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids

- Other methods driven by an objective function
 - Ward's Method uses squared error

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	11	12	13	4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: MIN

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

• Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

Hierarchical Clustering: MAX

Strength of MAX

Original Points

Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX

Original Points

Two Clusters

- •Tends to break large clusters
- •Biased towards globular clusters

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}}{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} | \cdot | Cluster_{i} | \cdot | Cluster_{i} |$$

 Need to use average connectivity for scalability since total proximity favors large clusters

	1	2	13	4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Group Average

Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space requirements

 O(N²) space since it uses the proximity matrix.

N is the number of points.

O(N³) time in many cases

- There are N steps and at each step the size, N², proximity matrix must be updated and searched
- Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

MST: Divisive Hierarchical Clustering

Build MST (Minimum Spanning Tree)

- Start with a tree that consists of any point
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
- Add q to the tree and put an edge between p and q

MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (EPS)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within EPS, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN Algorithm

Eliminate noise points

Perform clustering on the remaining points

```
current\_cluster\_label \gets 1
```

for all core points \mathbf{do}

if the core point has no cluster label then

 $current_cluster_label \leftarrow current_cluster_label + 1$

Label the current core point with cluster label current_cluster_label

end if

for all points in the Eps-neighborhood, except i^{th} the point itself do

 ${\bf if}$ the point does not have a cluster label ${\bf then}$

Label the point with cluster label $current_cluster_label$

end if

end for

end for

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

$$Eps = 10$$
, $MinPts = 4$

When DBSCAN Works Well

Original Points

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But propriety of clusters can be subjective.
- But we need evaluation measures
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Clusters found in Random Data

Different Aspects of Cluster Validation

- 1. Determining the clustering tendency of a set of data
 - Distinguishing whether non-random structure actually exists in the data.
- 2. Comparing the results of a cluster analysis to externally known results
 - □ To externally given class labels.
- 3. Evaluating how well the results of a cluster analysis fit the data *without* reference to external information.

- Use only the data

- 4. Comparing the results of two different sets of cluster analyses to determine which is better.
- 5. Determining the 'correct' number of clusters.
- 6. For 2, 3, and 4, we can further distinguish whether we want to evaluate the entire clustering or just individual clusters.

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity - the following three types.
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.

Entropy

Internal Index: Used to measure the goodness of a clustering structure *without* respect to external information.

□ Sum of Squared Error (SSE)

- Relative Index: Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy
- Sometimes these are referred to as criteria instead of indices
 - However, sometimes criterion is the general strategy and index is the numerical measure that implements the criterion.

Measuring Cluster Validity Via Correlation

- Two matrices
 - Proximity Matrix
 - "Incidence" Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density or contiguity based clusters.

Measuring Cluster Validity Via Correlation

 Correlation of incidence and proximity matrices for the K-means clustering of the following two data sets.

 Order the similarity matrix with respect to cluster labels and inspect visually.

Clusters in random data are not so crisp

DBSCAN

Clusters in random data are not so crisp

K-means

Clusters in random data are not so crisp

Complete Link

0.8

1

DBSCAN

Internal Measures: SSE

- Clusters in more complicated figures aren't well separated
- Internal Index: Used to measure the goodness of a clustering structure without respect to external information
 - SSE
- SSE is good for comparing two clusterings or two clusters (average SSE).
- Can also be used to estimate the number of clusters

Framework for Cluster Validity

- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more "atypical" a clustering result is, the more likely it represents valid structure in the data
 - Can compare the values of an index that result from random data or clusterings to those of a clustering result.
 - If the value of the index is unlikely, then the cluster results are valid
 - These approaches are more complicated and harder to understand.
- For comparing the results of two different sets of cluster analyses, a framework is less necessary.
 - However, there is the question of whether the difference between two index values is significant

Statistical Framework for Correlation

 Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.

Corr = -0.9235

Corr = -0.5810

Internal Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_i| (m - m_i)^2$$

Where |C_i| is the size (number of data points) of cluster i

Internal Measures: Cohesion and Separation

- Example: SSE
 - BSS + WSS = constant

K=1 cluster:

$$WSS = (1-3)^{2} + (2-3)^{2} + (4-3)^{2} + (5-3)^{2} = 10$$

BSS = 4 × (3-3)^{2} = 0
Total = 10 + 0 = 10

K=2 clusters:

$$WSS = (1 - 1.5)^{2} + (2 - 1.5)^{2} + (4 - 4.5)^{2} + (5 - 4.5)^{2} = 1$$

$$BSS = 2 \times (3 - 1.5)^{2} + 2 \times (4.5 - 3)^{2} = 9$$

$$Total = 1 + 9 = 10$$

Internal Measures: Cohesion and Separation

- A proximity graph based approach can also be used for cohesion and separation.
- Cluster cohesion is the sum of the weight of all links within a cluster.
- Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Internal Measures: Silhouette Coefficient

- Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, *i*
 - Calculate *a* = average distance of *i* to the points in its cluster
 - Calculate b = min (average distance of *i* to points in another cluster)
 - □ The silhouette coefficient for a point is then given by

s = 1 - a/b if a < b, (or s = b/a - 1 if $a \ge b$, not the usual case)

- Typically between 0 and 1.
- The closer to 1 the better.

 Can calculate the Average Silhouette width for a cluster or a clustering Final Comment on Cluster Validity

The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

- Without a strong effort in this direction
 - Cluster analysis will remain a black art
 - Accessible only to those true believers who have experience and great courage.