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Classification

 Dividing up objects so that each is assigned 
to one of a number of mutually exhaustive 
and exclusive categories.

 To devise a scheme for classifying new 
instances we use a training set of existing 
(past) labeled instances.

 By abstracting known classification of existing 
instance, develop a predictive mechanism

 First method: classic Bayesian probabilities
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Probability

(Kolmogorov’s axioms, 
first published in German 1933)

 All probabilities are between 0 and 1. For any 
proposition a, 0 ≤ P(a) ≤ 1 

 P(true)=1,  P(false)=0
The probability of disjunction is given by

 Product rule
P(ab)  P(a) P(b) P(ab)
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Theorem of total probability

 If events A1, ... , An are mutually exclusive with

then



Bayes’s rule 

 (The Reverend Thomas Bayes 1702-1761)
 He set down his findings on probability in "Essay 

Towards Solving a Problem in the Doctrine of 
Chances" (1763), published posthumously in the 
Philosophical Transactions of the Royal Society of 
London

P(b | a) 
P(a | b)P(b)

P(a)



Train History

 Historical 
database of 
train 
performance

 How us 
probabilities to 
classify new 
instance:
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Pick the Majority

 Choose the most frequent classification.

 Train is on time more than any other 
classification

 Correct 70% of the time (historically)

 Does not take advantage of the accumulated 
information

 But might be as good as you can do.

 Alternative: Use conditional probabilities.

 Example: probability that class = on time given 
that season = winter.
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Conditional Probabilities
 The probability of an event, given the occurrence of some other event is 

conditional probability 

 Written as, e.g.

 Consulting the table:


Class = on time
season = winter  

ଶ

଺


ଶ

଺


ଵ

଺


ଷ

଺


଴

଺

 Note that very late is the largest (0.5) so might 

conclude that most likely classification is very late.

 Different from the calculated prior probability
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Conditional Probabilities - Naïve Bayes

 For

 Calculate

 There are only two instances with this combination of 
attribute values

 The Naïve Bayes algorithm provides a scheme for 
combining prior probabilities and conditional probabilities 
in a single formula

 Also uses conditional probabilities, but differently
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Naïve Bayes

 Instead, for example, of concluding that the class is very 
late given that the season is winter

calculate the probability that the season is winter given 
that the class is very late

 Calculated as the number of times 
season=winter and class=very late occur in the 
same instance, divided by the number of times 
the class is very late

 Similarly, calculate other conditional probabilities, 
e.g., 
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Conditional and Prior Probabilities
 Conditional probability – number of 

instances for which day=weekday and class=on time, divided by the total 
number of instances for which the class=on time
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 Number of instances 
for which 
day=weekday is 9 
and class=on time

 Number of instances 
for which 
day=weekday is 14

 ଽ

ଵସ

 Prior probability of 
class=very late 
divided by the total 
number of instances, 

i.e., 
ଷ

ଶ଴



Bayes Theorem
 Now calculate the probabilities of interest

 Posterior probabilities of each possible class occurring for a 
specified instance, for know values of the attributes.

 Given a set of mutually exclusive and exhaustive classifications 

1 2 𝑘, which have prior probabilities 

2 𝑘 respectively, and attributes 

1 2 𝑛 which for a given instance have values 1 2, 𝑛

respectively, the posterior probability of class 𝑖 occurring for the 
specified instance can be shown to be proportional to

𝑖 1 1 2 2 𝑛 𝑛 𝑖

 Making the assumption that the attributes are independent, the 
value of this expression can be calculated using the product

𝑖 1 1 𝑖 2 2 𝑖 𝑛 𝑛 𝑖

 We calculate this product for each value of from to and 
choose the classification that has the largest value.
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Naïve Bayes

 Also written (using -notation) as
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Naïve Bayes
 Given conditions

 What is the probability that the train will be on time?

 On time –

 Weekday | on time –

 Winter | on time –

 High | on time  

 Heavy | on time 


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Naïve Bayes
 Given conditions

 What is the probability that the train will be late?

 Late –

 Weekday | late –

 Winter | late –

 High | late  

 Heavy | late 


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Naïve Bayes
 Given conditions

 What is the probability that the train will be cancelled?

 Cancelled –

 Weekday | cancelled –

 Winter | cancelled –

 High | cancelled  

 Heavy | cancelled 


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Naïve Bayes
 Given conditions

 What is the probability that the train will be very late?

 Very late –

 Weekday | very late –

 Winter | very late –

 High | very late  

 Heavy | very late 


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Naïve Bayes
 Given conditions

 What is the probability that the train will be very late?

 Very late –

 Weekday | very late –

 Summer | very late –

 High | very late  

 Heavy | very late 


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Nearest Neighbor Classification

 Mainly used when all attribute values are 
continuous

 Can be modified to deal with categorical 
attributes.

 Idea: estimate the classification of an unseen 
instance using the classification of the instance 
or instances that are closest to it

 Most similar to it
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Example
 Suppose a training set with just two instances:

 Presented with new instance:

 Resembles, intuitively, negative instance

 Hence, classify it as negative.

 General strategy:

 Find the training instances that are closest to the unseen 
instance

 Take the most commonly occurring classification for these 
instances.

20



Example Training Set
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Common Constraint on Distance Measures

 Previous example had two attributes, dimensions

 Can be Visualized 

 Can be extended to n-dimensions

 Presuppose distance measure

 Usually – not always - impose three requirements:.

 dist(A,A) = 0.

 Symmetry condition:

 dist(A,B) = dist(B,A) (the symmetry condition).

 Triangle inequality:

 dist(A,B) ≤ dist(A,Z) + dist(Z,B).
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Distance Measures
 Euclidean distance between points ( 1 2 ) and 

( 1 2 𝑛) in n-dimensional space is

ଵ ଵ
ଶ

ଶ ଶ
ଶ

௡ ௡
ଶ 

 Manhattan distance:

 Distance between the points (4, 2) and 

(12, 9) in Figure 2.9 is 

(12 − 4) + (9 − 2) = 8 + 7 = 15.
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Maximum Dimension Distance

 Largest absolute difference between any pair of 
corresponding attribute values. 

 Absolute difference is the difference converted 
to a positive number if it is negative.

 Example:

 Maximum Dimension Distance: 
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Distance Measures

 Euclidean Distance

 Cosine Similarity

 Hamming Distance

 Manhattan Distance

 Chebyshev Distance

 Minkowski Distance

 Jaccard Distance

 Haversine

 Sørensen-Dice Index
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Normalization

 Millage dominates

 Millage and Age not independent 

 Normalize all values

 Lowest value of attribute A in training set is min and the 
highest value is max, we convert each value of A, say a, 
to (a − min)/(max − min).
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Categorical Attributes
 Weakness of the nearest neighbor approach - no entirely 

satisfactory way of dealing with categorical attributes.

 One possibility is to say that the difference between any two 
identical values of the attribute is zero and that the difference 
between any two different values is 1. 

 Amounts to saying (for a color attribute) red − red = 0, red − blue 
= 1, blue − green = 1, etc.

 Sometimes there is an ordering (or partial ordering) of the values of 
an attribute

 Might have values good, average and bad. 

 Can treat the difference between good and average or between 
average and bad as 0.5 and the difference between good and 
bad as 1. 

 May be the best we can do in practice.
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