Computer Science 477

Estimating Classifier Accuracy

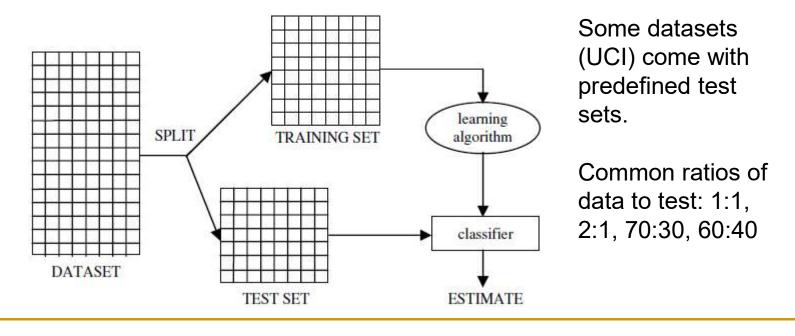
Lecture 8

Predictive Classifier Accuracy

- See how well it works in practice
- Applies to any classifier
 - Illustrated here with tree classifiers.
- Estimate the predictive accuracy by measuring its accuracy for a sample of data not used when generated.
- Three methods:
 - Divide into training set and test set
 - k-fold cross-validation
 - N-fold (or leave-one-out) cross-validation.

Separate Training and Test Sets

- Use training to construct a classifier (decision tree, neural net etc.).
- Classifier is used to predict the classification for the instances in the test set.
- Test set contains N instances of which C are correctly classified the predictive accuracy p = C/N.



Standard Error

- Predictive accuracy is an *estimate* of performance of classifier.
- Find range of values within which the true value of predictive accuracy
- Use standard error associated with an estimated value p
- If *p* is calculated using a test set of *N* instances, standard error is $\sqrt{p(1-p)N}$
- Standard error enables to assert with a specified probability p that the true predictive accuracy is "so-many" standard errors below of above the estimated value of p.
- The more certain we wish to be, the greater the number of standard errors.
- The Probability is *confidence level, denoted CL written Z_{CL}*

Confidence Level

• Typical relation between CL and Z_{CL}

Confidence Level (CL)	0.9	0.95	0.99
Z_{CL}	1.64	1.96	2.58

- If the predictive accuracy of a test set is p
 - With standard error S then
 - □ With confidence level CL,
 - True predictive accuracy lies in the interval $p \pm Z_{CL} \times S$

Confidence Level Example

- Let 80 of 100 instances be predicted correctly
- Predictive accuracy, p = 0.8
- Standard error: $\sqrt{0.8 \times 0.2/100} = \sqrt{0.0016} = 0.04$
- With probability 0.95 the true and predicted accuracy lies in the interval 0.8 ± 1.96 × 0.04, between 0.7216 and 0.8784
- Predictive accuracy also known as error rate
 If *p* = 0.9, error rate is 10%

Repeated Train and Test

- Here: classifier used on k test sets (not just one)
- If all test sets are the same size, predictive average simply averaged
- Total number of instances kN, standard error of the estimate is $\sqrt{p(1-p)/kN}$
- Test sets not the same size, calculation more complicated.

Generalizing

■ Given N_i instances in the *i*th test set (1 ≤ i ≤ k) and the predicted accuracy for the *i*th test set is p_i the overall predictive accuracy p is

$$\sum_{i=1}^{i=k} p_i N_i / T$$

where

$$T = \sum_{i=1}^{i=k} N_i$$

- (weighted average of p_i values)
- Standard error is $\sqrt{p(1-p) \times T}$

k-fold Cross-validation

- Divide dataset of N instances into k equal subset
 k typically a small number such as 5 or 10.
- (If N is not exactly divisible by k, the final part will have fewer instances than the other k – 1 parts.)
- Series of *k* runs is now carried out.
- Each of the k parts in turn is used as a test set
- Other k 1 parts are used as a training set.
- The total number of instances correctly classified (in all k runs combined)
- Divided by the total number of instances N to give an overall level of predictive accuracy p, with standard error $\sqrt{p(1 p)/N}$.

Repeated Train & Test

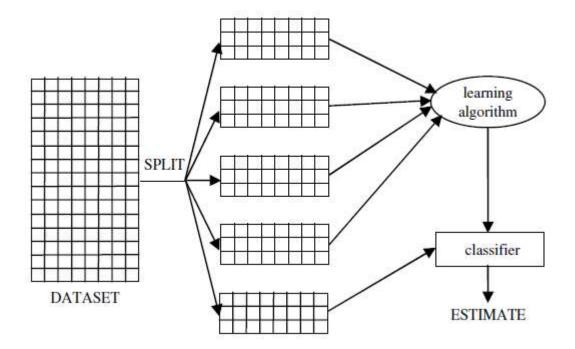
- Classifying k test sets (not just one).
- Average to produce overall estimate of p.
- If total number in each test set is N, standard error p is $\sqrt{p(1-p)/kN}$
- If test sets differ in size:
 - □ N_i instances in the *i*th test set $(1 \le i \le k)$
 - Predictive accuracy for *i*th test set is *p_i*, overall predictive accuracy is

$$\sum_{i=1}^{i=k} \frac{p_i N_i}{T}$$

where $T = \sum_{i=1}^{i=k} N_i$

Standard error is $\sqrt{p(1-p)/T}$

k-fold Cross-validation



N-fold Cross-validation

- N-fold cross-validation is an extreme case of k-fold cross-validation, often known as 'leave-one-out' crossvalidation or jack-knifing
- Dataset is divided into as many parts as there are instances,
 - Each instance effectively forming a test set of size one.
- N classifiers are generated, each from N 1 instances, and each is used to classify a single test instance.
- Predictive accuracy p is the total number correctly classified divided by the total number of instances.
- Standard error is $\sqrt{p(1 p)/N}$.

N-fold cross-validation

Unsuitable for use with large datasets.

- Utility questionable
- Most likely to be of benefit with very small datasets where as much data as possible needs to be used to train the classifier

Datasets with Missing Values

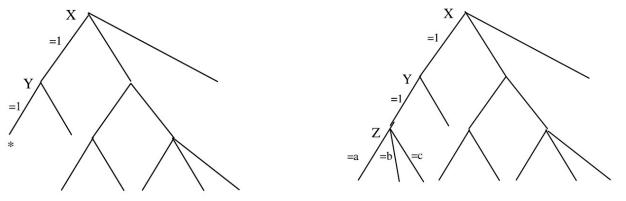
- Discard Instances
- Advantage:
 - Avoid introducing any data errors.
- Disadvantages
 - Discarding data may damage the reliability of the resulting classifier.
 - Cannot be used when a high proportion of the instances in the training set have missing values
 - Not possible with this strategy to classify any instances in the test set that have missing values.
- Replace by Most Frequent or Average Value
 - Works better in practice

Missing Classifications

- More problematic
- Replace missing class with most common
 Unsatisfactory in practice
- Generally must disregard such instances.

Note on Missing Branches

- Missing branches can occur at any stage of decision tree generation
- Likely to occur lower down where the number of instances under consideration is smaller
- Suppose that tree construction has reached the following stage:



- Suppose that at * it is decided to split on categorical attribute Z, which has four possible values a, b, c and d, but no instance has value d.
- Cannot classify any new instance that has d for attribute Z

Experimental Results - I

- TDIDT classification of four data sets
- Information gain for attribute selection
- (See appendix B of the text).

Dataset	Description	classes	attribu	$attributes^+$		ces
			categ	cts	training	test
					set	set
vote	Voting in US					
	Congress in 1984	2	16		300	135
pima-	Prevalence of					
indians	Diabetes in Pima					
	Indian Women	2		8	7 <mark>6</mark> 8	
chess	Chess Endgame	2	7		647	
glass	Glass Identification	7		9*	214	

• Three of four datasets from UCI repository.

Experimental Results - I

- Vote datasets has separate training and test sets
- Other three: every third instance reserved for a test set

Dataset	Test set (instances)	Correctly classified	Incorrectly classified	Unclassified
vote	135	$126 \ (93\% \pm 2\%)$	7	2
pima-indians	256	191 (75% \pm 3%)	65	
chess	215	$214~(99.5\%~\pm~0.5\%)$	1	
glass	71	$50 (70\% \pm 5\%)$	21	

- Unclassified instances assigned a default classification (largest class)
- Unclassified instances rare, various rival policies inconsequential

10-fold, N-fold Cross-Validation

10-fold Cross-Validation:

Dataset	Instances	Correctly classified	Incorrectly classified
vote	300	$275 (92\% \pm 2\%)$	25
pima-indians	768	$536 (70\% \pm 2\%)$	232
chess	647	$645~(99.7\%~\pm~0.2\%)$	2
glass	214	$149~(70\% \pm 3\%)$	65

N-fold Cross Validation:

Dataset	Instances	Correctly classified	Incorrectly classified
vote	300	278 $(93\% \pm 2\%)$	22
pima-indians	768	$517~(67\%~\pm~2\%)$	251
chess	647	$646~(99.8\%\pm 0.2\%)$	1
glass	214	$144~(67\%~\pm~3\%)$	70

Experimental Results – Missing Values - II

TDIDT with information gain:

categ = categorical cts - continuous

() – at least one missing value

Dataset	Description	classes	$attributes^+$		instances	
			categ	cts	training set	test set
CIX	Credit Card Applications	2	9	6	$690 \\ (37)$	$\begin{array}{c} 200 \\ (12) \end{array}$
hypo	Hypothyroid Disorders	5	22	7	2514 (2514)	$1258 \\ (371)$
labor-ne	Labor Negotiations	2	8	8	40 (39)	17(17)

- Two strategies for missing values
 - Discard instances
 - Replacement
 - Most frequent
 - Average

Strategy 1 – Discard Instances

- Advantage: don't introduce data distortions
- Disadvantage: lose information
- Large proportion of missing attribute values can't use
 - Labor negotiations
 - Hyperthyroid disorders
- Applied to crx dataset:

Dataset	MV strategy	Rules	Tes	st set
			Correct	Incorrect
crx	Discard Instances	118	188	0

Correctly classifies all 188 complete test set

Strategy 2: Replace by most frequent/average

- Categorical replace by most common attribute value
- Continuous replace with average value

Dataset	MV strategy	Rules	Test set	
			Correct	Incorrect
crx	Discard Instances	118	188	0
crx	Most Frequent/Average Value	139	200	0

All 200 of the test set correctly classified.

Replacement with Hyperthyroid & Labor Negotiations

Hyperthyroid disorders:

Dataset	MV strategy	Rules	Tes	st set
			Correct	Incorrect
hypo	Most Frequent/Average Value	15	1251	7

- Classifies correctly 1251 of 1258 (99%)
- Impressive, since every single instance has missing attribute values
- Labor Negotiations:

Dataset	MV strategy	Rules	Tes	st set
			Correct	Incorrect
labor-ne	Most Frequent/Average Value	5	14	3

Correctly classifies 14 of 17 instances in training set

Confusion Matrix

 Displays how frequently instances of class X were correctly classified as class X or misclassified as some other class.

Correct	Classified as				
classification	democrat	republican			
democrat	81~(97.6%)	2(2.4%)			
republican	6(11.5%)	46 (88.5%)			

- Confusion Matrix for a Binary Classification
- 81 correctly classified as Democrat, 2 Democrats incorrectly classified as Republican
- 6 Republicans incorrectly classified as Democrat, 46 correctly classified as Republican

Confusion Matrix with non-binary classifications

• Six classifications:

Correct		Classified as						
classification	1	2	3	5	6	7		
1	52	10	7	0	0	1		
2	15	50	6	2	1	2		
3	5	6	6	0	0	0		
5	0	2	0	10	0	1		
6	0	1	0	0	7	1		
7	1	3	0	1	0	24		

- 52 1s correctly classified, 10 1s incorrectly classified as 2, 7 as 3, 1 as 7.
- 24 7s correctly classified, 1 incorrectly classified as 1, 3 as 2, 1 as 5.

Confusion Matrix

Correct classification	Classified as			
	+			
+	true positives	false negatives		
2 	false positives	true negatives		

- Confusion matrix interpretation
- When two classes: one regarded as positive
 Class of especial interest.

Value of TP, FN, FP, TN

- TP, FN, FP, TN Rate not depend on the relative sizes of P and N.
 - Similarly: any combination of two 'rate' values calculated from *different* rows of the confusion matrix
- Predictive Accuracy and other measures from values in *both* rows of the table are affected by the relative sizes of *P* and *N*

Can be a serious weakness.

Example – Driving Test

- Positive class corresponds to those who pass a driving test at the first attempt
 - Negative class corresponds to those who fail.
- Relative proportions in the real world are 9 to 10
 - Test set correctly reflects this.
- Implied confusion matrix:

		Predicted class		Total	
		+	-	instances	
Actual class	+	8,000	1,000	9,000	
	-	2,000	8,000	10,000	

- True positive rate of 0.89 and a false positive rate of 0.2
 - Assume: a satisfactory result

Example – Driving Test

- Suppose that the number of successes grows
 - Because of improved training,
 - Higher proportion of passes.

	Possible	confusion	matrix:
--	----------	-----------	---------

		Predicted class		Total	
		+	-	instances	
Actual class	+	8,000	1,000	9,000	
	-	2,000	8,000	10,000	

		Predicted class		Total	
		+	<u>.</u>	instances	
Actual class	+	80,000	10,000	90,000	
	82	2,000	8,000	10,000	

- Both confusion matrices the values of TP Rate and FP Rate are the same
 - (0.89 and 0.2 respectively).
- Values of the Predictive Accuracy measure are different.
- For the original confusion matrix, Predictive Accuracy is 16,000/19,000
 =
- 0.842. For the second one, Predictive Accuracy is 88,000/100,000 = 0.88.

Driving Test – Alternative Scenario

- A large increase in the relative proportion of failures
 - Because of an increase in the number of younger people being tested.
- Possible confusion matrix:

		Predicted class		Total	
		+	1000	instances	
Actual class	+	8,000	1,000	9,000	
		20,000	80,000	100,000	

- Predictive Accuracy is now 88,000/109,000 = 0.807.
- TP, FP Rate invariant
- FP Rate values would be the same.
- Three Predictive Accuracy values vary from 81% to 88%,
 - Reflecting changes in the relative numbers of positive and negative values in the test set, rather than any change in the quality of the classifier.

Non-binary Confusion Matrix

Correct	Classified as					
classification	1	2	3	5	6	7
1	52	10	7	0	0	1
2	15	50	6	2	1	2
3	5	6	6	0	0	0
5	0	2	0	10	0	1
6	0	1	0	0	7	1
7	1	3	0	1	0	24

 Confusion matrix for a classification with seven possible values