
Computer Science 477/577

Sequence Mining

Lecture 15

1

Sequence Data

10 15 20 25 30 35

2
3
5

6
1

1

Timeline

Object A:

Object B:

Object C:

4
5
6

2 7
8
1
2

1
6

1
7
8

Object Timestamp Events
A 10 2, 3, 5
A 20 6, 1
A 23 1
B 11 4, 5, 6
B 17 2
B 21 7, 8, 1, 2
B 28 1, 6
C 14 1, 8, 7

Sequence Database:

2

Formal Definition of a Sequence
 A sequence is an ordered list of elements (transactions)

s = < e1 e2 e3 … >

 Each element contains a collection of events (items)

ei = {i1, i2, …, ik}

 Each element is attributed to a specific time or location

 Length of a sequence, |s|, is given by the number of elements
of the sequence

 A k-sequence is a sequence that contains k events (items)

3

Examples of Sequence Data

Sequence
Database

Sequence Element (Transaction) Event
(Item)

Customer Purchase history of a given
customer

A set of items bought by a
customer at time t

Books, dairy products,
CDs, etc

Web Data Browsing activity of a
particular Web visitor

A collection of files viewed
by a Web visitor after a
single mouse click

Home page, index
page, contact info, etc

Event data History of events generated
by a given sensor

Events triggered by a
sensor at time t

Types of alarms
generated by sensors

Genome
sequences

DNA sequence of a particular
species

An element of the DNA
sequence

Bases A,T,G,C

Sequence

E1
E2

E1
E3 E2 E3

E4E2

Element
(Transaction) Event

(Item)

Examples of Sequence

 Web sequence:
< {Homepage} {Electronics} {Digital Cameras} {Canon

Digital Camera} {Shopping Cart} {Order Confirmation}
{Return to Shopping} >

 Sequence of initiating events causing the nuclear accident
at 3-mile Island:

<{clogged resin} {outlet valve closure} {loss of feedwater}
{condenser polisher outlet valve shut} {booster pumps trip}
{main waterpump trips} {main turbine trips} {reactor
pressure increases}>

 Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of
the King}>

5

Formal Definition of a Subsequence

 A sequence <a1 a2 … an> is contained in another
sequence <b1 b2 … bm> (m ≥ n) if there exist integers
i1 < i2 < … < in such that a1 bi1 , a2 bi2, …, an bin

 The support of a subsequence w is defined as the
fraction of data sequences that contain w

 A sequential pattern is a frequent subsequence (i.e., a
subsequence whose support is ≥ minsup)

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {8} > < {2} {3,5} > Yes

< {1,2} {3,4} > < {1} {2} > No

< {2,4} {2,4} {2,5} > < {2} {4} > Yes

6

Sequential Pattern Mining: Definition

 Given:

 A database of sequences

 A user-specified minimum support
threshold, minsup

 Task:

 Find all subsequences with support ≥
minsup

7

Sequential Pattern Mining: Challenge

 Given a sequence: <{a b} {c d e} {f} {g h i}>

 Examples of subsequences:

<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.

 How many k-subsequences can be extracted
from a given n-sequence?

<{a b} {c d e} {f} {g h i}> n = 9

k=4: Y _ _ Y Y _ _ _ Y

<{a} {d e} {i}>
126

4

9

:Answer

k

n

8

Sequential Pattern Mining: Example

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} > s=60%
< {2,3} > s=60%
< {2,4}> s=80%
< {3} {5}> s=80%
< {1} {2} > s=80%
< {2} {2} > s=60%
< {1} {2,3} > s=60%
< {2} {2,3} > s=60%
< {1,2} {2,3} > s=60%

Object Timestamp Events
A 1 1,2,4
A 2 2,3
A 3 5
B 1 1,2
B 2 2,3,4
C 1 1, 2
C 2 2,3,4
C 3 2,4,5
D 1 2
D 2 3, 4
D 3 4, 5
E 1 1, 3
E 2 2, 4, 5

9

Extracting Sequential Patterns

 Given n events: i1, i2, i3, …, in

 Candidate 1-subsequences:
<{i1}>, <{i2}>, <{i3}>, …, <{in}>

 Candidate 2-subsequences:
<{i1, i2}>, <{i1, i3}>, …, <{i1} {i1}>, <{i1} {i2}>, …, <{in-1} {in}>

 Candidate 3-subsequences:
<{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2} {i2}>, …,

<{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>, <{i1} {i1} {i2}>,
…

10

Generalized Sequential Pattern (GSP)
 Step 1:

 Make the first pass over the sequence database D to yield all
the 1-element frequent sequences

 Step 2:
Repeat until no new frequent sequences are found:
 Candidate Generation:

 Merge pairs of frequent subsequences found in the (k-1)th
pass to generate candidate sequences that contain k
items

 Initial Pruning:
 Prune if it is not the case that all of the k-1 subsequences

of a k sequence are frequent
 Support Counting:

 Make a new pass over the sequence database D to find
the support for these candidate sequences

 Candidate Elimination:
 Eliminate candidate k-sequences whose actual support is

less than minsup

11

Candidate Generation Examples
 Merging the sequences

w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}>
will produce the candidate sequence < {1} {2 3} {4 5}> because
the last two events in w2 (4 and 5) belong to the same element

 Merging the sequences
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4} {5}>
will produce the candidate sequence < {1} {2 3} {4} {5}>
because the last two events in w2 (4 and 5) do not belong to the
same element

 We do not have to merge the sequences
w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}>
to produce the candidate < {1} {2 6} {4 5}> because if the latter
is a viable candidate, then it can be obtained by merging w1

with
< {1} {2 6} {5}>

12

 S1: <{A,B}><{C}><{D,E}><{C}>

 S2: <{A,B}><{C,D}><{E}>

 S3: <{B}><{A}><{B}><{D,E}>

 S4: <{C}><{D,E}><{C}><{E}>

 S5: <{B}><{A}><{B,C}><{A,D}>

13

< {A} >, < {B} >, < {C} >, < {D} >, < {E} >
< {A} {C} >, < {A} {D} >, < {A} {E} >, < {B} {C} >,
< {B} {D} >, < {B} {E} >, < {C} {D} >, < {C} {E} >, < {D, E} >

 1-sequences?
 <{A}> : 4/5 ≥ 50%

14

< {A} >, < {B} >, < {C} >, < {D} >, < {E} >
< {A} {C} >, < {A} {D} >, < {A} {E} >, < {B} {C} >,
< {B} {D} >, < {B} {E} >, < {C} {D} >, < {C} {E} >, < {D, E} >

 1-sequences?
 <{A}> : 4/5 ≥ 50%

 <{B}> : 4/5 ≥ 50%

 <{E}> : 4/5 ≥ 50%

15

< {A} >, < {B} >, < {C} >, < {D} >, < {E} >
< {A} {C} >, < {A} {D} >, < {A} {E} >, < {B} {C} >,
< {B} {D} >, < {B} {E} >, < {C} {D} >, < {C} {E} >, < {D, E} >

 1-sequences?
 <{A}> : 4/5 ≥ 50%

 <{B}> : 4/5 ≥ 50%

 <{E}> : 4/5 ≥ 50%

 2-sequences?
 <{A, B}> : 2/5 < 50%

16

< {A} >, < {B} >, < {C} >, < {D} >, < {E} >
< {A} {C} >, < {A} {D} >, < {A} {E} >, < {B} {C} >,
< {B} {D} >, < {B} {E} >, < {C} {D} >, < {C} {E} >, < {D, E} >

 1-sequences?
 <{A}> : 4/5 ≥ 50%

 <{B}> : 4/5 ≥ 50%

 <{E}> : 4/5 ≥ 50%

 2-sequences?
 <{A, B}> : 2/5 < 50%

 <{A,C}> : 0 < 50%

 <{D, E}> : 3/5 ≥ 50%

17

Sequence Merging Procedure
 A sequence s(1) is merged with another sequence s(2) only if the

subsequence obtained by dropping the first event in s(1) is identical
to the subsequence obtained by dropping the last event in s(2).

 The resulting candidate is the sequence s(1), concatenated with the
last event from s(2).

 The last event from s(2) can either be merged into the same
element as the last event in s(1) or

 Different elements depending on the following conditions:

 If the last two events in s(2) belong to the same element, then the
last event in s(2) is part of the last element in s(1) in the merged
sequence.

 If the last two events in s(2) belong to different elements, then the
last event in s(2) becomes a separate element appended to the
end of s(1) in the merged sequence.

18

 <{1}{2}{3}{ 4}> is obtained by merging <{1}{2}{3}> with
<{2}{3}{4}>.

 Merging <{1}{5}{3}> with <{5}{3,4}> <{1}{5}{3,4}>

 <{1}{2, 5}{3}> is generated by merging a different pair of
sequences, <{1}{2,5}> and <{2,5}{3}>.

 <{2,5}{3}> merges with <{2,5}{3,4}> <{2,5}{3,4}>

19

< {1} {2} {3} >
< {1} {2 5} >
< {1} {5} {3} >
< {2} {3} {4} >
< {2 5} {3} >
< {3} {4} {5} >
< {5} {3 4} >

< {1} {2} {3} {4} >
< {1} {2 5} {3} >
< {1} {5} {3 4} >
< {2} {3} {4} {5} >
< {2 5} {3 4} >

< {1} {2 5} {3} >

Frequent
3-sequences

Candidate
Generation

Candidate
Pruning

Timing Constraints (I)

{A B} {C} {D E}

<= ms

<= xg >ng

xg: max-gap

ng: min-gap

ms: maximum span

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {4,7} {4,5} {8} > < {6} {5} >

< {1} {2} {3} {4} {5}> < {1} {4} >

< {1} {2,3} {3,4} {4,5}> < {2} {3} {5} >

< {1,2} {3} {2,3} {3,4} {2,4} {4,5}> < {1,2} {5} >

xg = 2, ng = 0, ms= 4

Yes

No

Yes

No

Mining Sequential Patterns with Timing Constraints

 Approach 1:

 Mine sequential patterns without timing
constraints

 Postprocess the discovered patterns

 Approach 2:

 Modify Generalized Sequential Pattern
algorithm to directly prune candidates that
violate timing constraints

 Question:

 Does Apriori principle still hold?

21

Apriori Principle for Sequence Data
Object Timestamp Events

A 1 1,2,4
A 2 2,3
A 3 5
B 1 1,2
B 2 2,3,4
C 1 1, 2
C 2 2,3,4
C 3 2,4,5
D 1 2
D 2 3, 4
D 3 4, 5
E 1 1, 3
E 2 2, 4, 5

Suppose:

xg = 1 (max-gap)

ng = 0 (min-gap)

ms = 5 (maximum span)

minsup = 60%

<{2} {5}> support = 40%

but

<{2} {3} {5}> support = 60%

Problem exists because of max-gap
constraint

No such problem if max-gap is infinite

22

Timing Constraints (II)

{A B} {C} {D E}

<= ms

<= xg >ng <= ws

xg: max-gap

ng: min-gap

ws: window size

ms: maximum span

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {4,7} {4,6} {8} > < {3} {5} >

< {1} {2} {3} {4} {5}> < {1,2} {3} >

< {1,2} {2,3} {3,4} {4,5}> < {1,2} {3,4} >

xg = 2, ng = 0, ws = 1, ms= 5

23

No

Yes

Yes

Counting Methods
 COBJ: One occurrence

per object.

 This method looks for at
least one occurrence of a
given sequence in an
object's timeline.

 Even though the
sequence <{p}{q}>
appears several times in
the object's timeline, it is
counted only once with p
occurring at t = 1 and q
occurring at t = 3.

24

Counting Methods CWIN: One occurrence per
sliding window.

 In this approach, a sliding
time window of fixed length
(maxspan) is moved across
an object's timeline, one
unit at a time.

 The support count is
incremented each time the
sequence is encountered in
the sliding window.

 The sequence ({p}{q}) is
observed six times using
this method.

25

Counting Methods CMINWIN: Number of minimal windows of
occurrence.

 A minimal window of occurrence is the
smallest window in which the sequence
occurs given the timing constraints.

 In other words, a minimal window is the time
interval such that the sequence occurs in
that time interval, but it does not occur in
any of the proper subintervals of it.

 A restrictive version of CWIN, because its
effect is to shrink and collapse some of the
windows that are counted by CWIN.

 Sequence <{p}{q}> has four minimal window
occurrences:

 (1) the pair (p: t = 2, q: t = 3),

 (2) the pair (p: t = 3, q:t = 4),

 (3) the pair (p: t = 5, q: t = 6), and

 (4) the pair (p: t = 6, q: t = 7).

 The occurrence of event pat t = 1 and
event q at t = 3 is not a minimal window
occurrence because it contains a
smaller window with (p: t = 2, q: t = 3),
which is indeed a minimal window of
occurrence.

26

Counting Methods CDIST 0: Distinct occurrences
with possibility of event-timestamp
overlap.

 A distinct occurrence of a
sequence is defined to be the set
of event timestamp pairs such that
there has to be at least one new
event timestamp pair that is
different from a previously counted
occurrence.

 Counting all such distinct
occurrences results in the CDIST
0 method.

 If the occurrence time of events p
and q is denoted as a tuple (t(p),
t(q)), then this method yields eight
distinct occurrences of sequence (
({p }{ q}) at times (1,3), (2,3), (2,4),
(3,4), (3,5), (5,6), (5,7), and (6,7).

27

Counting Methods CDIST: Distinct occurrences with no
event-timestamp overlap allowed.

 In CDIST 0 above, two occurrences of
a sequence were allowed to have
overlapping event-timestamp pairs,
e.g., the overlap between (1,3) and
(2,3). In the CDIST method, no overlap
is allowed.

 Effectively, when an event-timestamp
pair is considered for counting, it is
marked as used and

 is never used again for subsequent
counting of the same sequence.

 Example: there are five distinct, non-
overlapping occurrences of the

 sequence ({p} { q}) in the diagram
These occurrences happen at times
(1,3), (2,4), (3,5), (5,6), and (6,7).

 Observe that these occurrences are
subsets of the occurrences observed
in CDIST 0.

28

 COBJ: One occurrence per object

 CWIN: One occurrence per sliding window

 CMINWIN: Number of minimal windows of
occurrence

 CDIST 0: Distinct occurrences with
possibility of event-timestamp overlap

 CDIST: Distinct occurrences with no event-
timestamp overlap allowed

Counting Methods - Summary

29

Contiguous Subsequences

 s is a contiguous subsequence of
w = <e1>< e2>…< ek>

if any of the following conditions hold:
1. s is obtained from w by deleting an item from either e1 or ek

2. s is obtained from w by deleting an item from any element ei

that contains more than 2 items

3. s is a contiguous subsequence of s’ and s’ is a contiguous
subsequence of w (recursive definition)

 Examples: s = < {1} {2} >
 is a contiguous subsequence of

< {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >

 is not a contiguous subsequence of
< {1} {3} {2}> and < {2} {1} {3} {2}>

30

Modified Candidate Pruning Step

 Without maxgap constraint:
 A candidate k-sequence is pruned if at least one

of its (k-1)-subsequences is infrequent

 With maxgap constraint:
 A candidate k-sequence is pruned if at least one

of its contiguous (k-1)-subsequences is
infrequent

31

 The window size constraint restricts the time
difference between the latest and the earliest
event in any element of a sequence.

 In the above subsequences the first violates
the mingap constraint since element gap is 0.

 In the second, ws is 1 time step for {1,2} and
the element gap is 1 which is OK.

 For the third the ws is 0 and the element gap
is 2 which is OK

32

Timing Constraints (III)

Modified Support Counting Step

 Given a candidate pattern: <{a, c}>
 Any data sequences that contain

<… {a c} … >,
<… {a} … {c}…> (where time({c}) – time({a}) ≤
ws)
<…{c} … {a} …> (where time({a}) – time({c}) ≤
ws)

will contribute to the support count of candidate
pattern

33

Other Formulation
 In some domains, we may have only one very long time

series

 Example:

 monitoring network traffic events for attacks

 monitoring telecommunication alarm signals

 Goal is to find frequent sequences of events in the time
series

 This problem is also known as frequent episode mining

E1

E2

E1

E2
E1

E2

E3

E4
E3
E4

E1

E2

E2 E4

E3 E5

E2

E3 E5

E1

E2 E3 E1

Pattern: <E1> <E3>

34

General Support Counting Schemes

Assume:

xg = 2 (max-gap)

ng = 0 (min-gap)

ws = 0 (window size)

ms = 2 (maximum span)

35

