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More on Clustering

Lecture 17
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Hierarchical Clustering
 Two main types of hierarchical clustering

 Agglomerative:  

 Start with the points as individual clusters

 At each step, merge the closest pair of clusters 
until only one cluster (or k clusters) left

 Divisive:  

 Start with one, all-inclusive cluster 

 At each step, split a cluster until each cluster 
contains a point (or there are k clusters)

 Traditional hierarchical algorithms use a similarity or 
distance matrix

 Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

 More popular hierarchical clustering technique
 Basic algorithm is straightforward

1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

 Key operation is the computation of the proximity of two 
clusters
 Different approaches to defining the distance 

between clusters distinguish the different algorithms
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Starting Situation 

 Start with clusters of individual points and a 
proximity matrix
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Intermediate Situation
 After some merging steps, we have some clusters 
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Intermediate Situation
 We want to merge the two closest clusters (C2 and C5)  and 

update the proximity matrix. 
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After Merging
 The question is “How do we update the proximity matrix?” 
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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Cluster Similarity: MIN or Single Link 

 Similarity of two clusters is based on the two 
most similar (closest) points in the different 
clusters
 Determined by one pair of points, i.e., by one link 

in the proximity graph.

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Strength of MIN

Original Points Two Clusters

• Can handle non-elliptical shapes
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Limitations of MIN

Original Points Two Clusters

• Sensitive to noise and outliers

16



Cluster Similarity: MAX or Complete Linkage

 Similarity of two clusters is based on the two 
least similar (most distant) points in the 
different clusters
 Determined by all pairs of points in the two 

clusters

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers
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Limitations of MAX

Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters
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Cluster Similarity: Group Average
 Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters.

 Need to use average connectivity for scalability since total 
proximity favors large clusters
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I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical Clustering: Group Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

 Compromise between Single and 
Complete Link

 Strengths
 Less susceptible to noise and outliers

 Limitations
 Biased towards globular clusters

23



Cluster Similarity: Ward’s Method

 Similarity of two clusters is based on the 
increase in squared error when two clusters are 
merged

 Similar to group average if distance between 
points is distance squared

 Less susceptible to noise and outliers

 Biased towards globular clusters

 Hierarchical analogue of K-means

 Can be used to initialize K-means
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Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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Hierarchical Clustering:  Time and Space 
requirements

 O(N2) space since it uses the proximity 
matrix.  
 N is the number of points.

 O(N3) time in many cases
 There are N steps and at each step the size, N2, 

proximity matrix must be updated and searched

 Complexity can be reduced to O(N2 log(N) ) time 
for some approaches
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Hierarchical Clustering:  Problems and Limitations

 Once a decision is made to combine two 
clusters, it cannot be undone

 No objective function is directly minimized

 Different schemes have problems with one or 
more of the following:
 Sensitivity to noise and outliers

 Difficulty handling different sized clusters and 
convex shapes

 Breaking large clusters
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MST: Divisive Hierarchical Clustering

 Build MST (Minimum Spanning Tree)
 Start with a tree that consists of any point

 In successive steps, look for the closest pair of points (p, q)  such 
that one point (p) is in the current tree but the other (q) is not

 Add q to the tree and put an edge between p and q
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MST: Divisive Hierarchical Clustering

 Use MST for constructing hierarchy of 
clusters
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DBSCAN

 DBSCAN is a density-based algorithm.
 Density = number of points within a specified 

radius (EPS)
 A point is a core point if it has more than a 

specified number of points (MinPts) within Eps

 These are points that are at the interior of a 
cluster

 A border point has fewer than MinPts within 
EPS, but is in the neighborhood of a core point

 A noise point is any point that is not a core 
point or a border point. 
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DBSCAN: Core, Border, and Noise Points
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DBSCAN Algorithm

 Eliminate noise points

 Perform clustering on the remaining points
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DBSCAN: Core, Border and Noise Points

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4
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When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes
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When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data
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DBSCAN: Determining EPS and MinPts

 Idea is that for points in a cluster, their kth nearest 
neighbors are at roughly the same distance

 Noise points have the kth nearest neighbor at farther 
distance

 So, plot sorted distance of every point to its kth

nearest neighbor
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Cluster Validity 

 For supervised classification we have a variety of 
measures to evaluate how good our model is
 Accuracy, precision, recall

 For cluster analysis, the analogous question is how to 
evaluate the “goodness” of the resulting clusters?

 But propriety of clusters can be subjective.

 But we need evaluation measures
 To avoid finding patterns in noise
 To compare clustering algorithms
 To compare two sets of clusters
 To compare two clusters
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Clusters found in Random Data
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1. Determining the clustering tendency of a set of data

 Distinguishing whether non-random structure actually exists in 
the data. 

2. Comparing the results of a cluster analysis to externally known 
results

 To externally given class labels.

3. Evaluating how well the results of a cluster analysis fit the data 
without reference to external information. 

- Use only the data

4. Comparing the results of two different sets of cluster analyses to 
determine which is better.

5. Determining the ‘correct’ number of clusters.

6. For 2, 3, and 4, we can further distinguish whether we want to 
evaluate the entire clustering or just individual clusters. 

Different Aspects of Cluster Validation

39



 Numerical measures that are applied to judge various aspects of 
cluster validity - the following three types.

 External Index: Used to measure the extent to which cluster labels 
match externally supplied class labels.

 Entropy 

 Internal Index:  Used to measure the goodness of a clustering 
structure without respect to external information. 

 Sum of Squared Error (SSE)

 Relative Index: Used to compare two different clusterings or 
clusters. 

 Often an external or internal index is used for this function, e.g., 
SSE or entropy

 Sometimes these are referred to as criteria instead of indices

 However, sometimes criterion is the general strategy and index 
is the numerical measure that implements the criterion.

Measures of Cluster Validity
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 Two matrices 

 Proximity Matrix

 “Incidence” Matrix

 One row and one column for each data point

 An entry is 1 if the associated pair of points belong to the 
same cluster

 An entry is 0 if the associated pair of points belongs to 
different clusters

 Compute the correlation between the two matrices

 Since the matrices are symmetric, only the correlation between 
n(n-1) / 2 entries needs to be calculated.

 High correlation indicates that points that belong to the same cluster 
are close to each other. 

 Not a good measure for some density or contiguity based clusters.

Measuring Cluster Validity Via Correlation
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Measuring Cluster Validity Via Correlation

 Correlation of incidence and proximity matrices 
for the K-means clustering of the following two 
data sets. 
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 Order the similarity matrix with respect to cluster 
labels and inspect visually. 

Using Similarity Matrix for Cluster Validation
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Using Similarity Matrix for Cluster Validation

 Clusters in random data are not so crisp
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 Clusters in random data are not so crisp

K-means
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Using Similarity Matrix for Cluster Validation

 Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation
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 Clusters in more complicated figures aren’t well separated

 Internal Index:  Used to measure the goodness of a clustering 
structure without respect to external information

 SSE

 SSE is good for comparing two clusterings or two clusters (average 
SSE).

 Can also be used to estimate the number of clusters

Internal Measures: SSE
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 Need a framework to interpret any measure. 

 For example, if our measure of evaluation has the value, 10, is 
that good, fair, or poor?

 Statistics provide a framework for cluster validity

 The more “atypical” a clustering result is, the more likely it 
represents valid structure in the data

 Can compare the values of an index that result from random 
data or clusterings to those of a clustering result.

 If the value of the index is unlikely, then the cluster results 
are valid

 These approaches are more complicated and harder to 
understand.

 For comparing the results of two different sets of cluster analyses, a 
framework is less necessary.

 However, there is the question of whether the difference 
between two index values is significant

Framework for Cluster Validity
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 Correlation of incidence and proximity matrices for the 
K-means clusterings of the following two data sets. 

Statistical Framework for Correlation
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 Cluster Cohesion: Measures how closely related are objects in a 
cluster

 Example: SSE
 Cluster Separation: Measure how distinct or well-separated a 

cluster is from other clusters

 Example: Squared Error

 Cohesion is measured by the within cluster sum of squares (SSE)

 Separation is measured by the between cluster sum of squares

 Where |Ci| is the size (number of data points) of cluster i

Internal Measures: Cohesion and Separation
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Internal Measures: Cohesion and Separation

 Example: SSE
 BSS + WSS = constant
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 A proximity graph based approach can also be used for 
cohesion and separation.

 Cluster cohesion is the sum of the weight of all links within a 
cluster.

 Cluster separation is the sum of the weights between nodes in 
the cluster and nodes outside the cluster.

Internal Measures: Cohesion and Separation

cohesion separation
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 Silhouette Coefficient combine ideas of both cohesion and separation, 
but for individual points, as well as clusters and clusterings

 For an individual point, i
 Calculate a = average distance of i to the points in its cluster

 Calculate b = min (average distance of i to points in another cluster)

 The silhouette coefficient for a point is then given by 

s = 1 – a/b   if a < b,   (or s = b/a - 1    if a  b, not the usual case)

 Typically between 0 and 1. 

 The closer to 1 the better.

 Can calculate the Average Silhouette width for a cluster or a 
clustering

Internal Measures: Silhouette Coefficient

a
b
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 The validation of clustering structures is the most 
difficult and frustrating part of cluster analysis. 

 Without a strong effort in this direction

Cluster analysis will remain a black art 

Accessible only to those true believers who 
have experience and great courage.

Final Comment on Cluster Validity
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