Computer Science 477

Using Frequency Tables GINI Index and χ^2 for Attribute Selection

Lecture 7

Optimizing Entropy Calculations

- Calculating entropy laborious
- At each node a table of values such as needs to be calculated for every possible value of every categorical attribute.
- **Nore efficient method: single table to be constructed for each** categorical attribute at each node.

Lens24 training data for age $= 1$

Frequency table for age.

Number of occurrences for each class and each value of the attribute age.

Frequency Table

Entire lens24 data set.

Frequency table for age.

Calculation of Entropy

- Denote the total number of instances by N, so $N = 24$.
- \blacksquare E_{new} , average entropy of the training sets resulting from splitting on a specified attribute, calculated by forming $-2 \cdot \log_2 2 - 1 \cdot \log_2 1 - 1 \cdot \log_2 1$ a new sum. Denote the total number of

instances by N, so $N = 24$.
 E_{new} , average entropy of the

training sets resulting from

splitting on a specified

attribute, calculated by forming

a new sum.
 $-2 \cdot \log$
 $-2 \cdot \log$

(1) For ev
- (1) For every non-zero value $V = -4 \cdot \log_2 4 5 \cdot \log_2 5 6 \cdot \log_2 6$ in the main body of the table row), subtract $V \times \log_2 V$. a new sum.
 $-2 \cdot \log_2 2 - 1 \cdot \log_2 1 - 1 \cdot \log_2 1$
 $-2 \cdot \log_2 2 - 2 \cdot \log_2 2 - 1 \cdot \log_2 1$

(1) For every non-zero value V

in the main body of the table

(part above the 'column sum'

row),subtract $V \times \log_2 V$.

(2) For every n
- (2) For every non-zero value S in the column sum row, add $2^{\mathcal{S}}$
-

 $+ 8 \cdot \log_2 8 + 8 \cdot \log_2 8 + 8 \cdot \log_2 8$

Calculating Entropy

- Using table of logs:
- $-2 \cdot \log_2 2 1 \cdot \log_2 1 1 \cdot \log_2 1 2 \cdot$ $\log_2 2 - 2 \cdot \log_2 2 - 1 \cdot \log_2 1 - 4 \cdot \log_2 4 - 5$ $\log_2 5 - 6 \cdot \log_2 6 + 8 \cdot \log_2 8 + 8 \cdot \log_2 8 +$ $8 \cdot \log_2 8$
- **Collecting terms, rearranging and dividing** $\frac{10}{11}$ by 24:
- $\sim (-3 \times 2 \cdot \log_2 2 3 \cdot \log_2 1 4 \cdot \log_2 4 5 \cdot$ $\log_2 5 - 6 \cdot \log_2 6 + 3 \times 8 \cdot \log_2 8$ /24
- $\log_2 x$ \boldsymbol{x} $\mathbf{1}$ Ω \mathfrak{D} $\mathbf{1}$ 1.5850 3 $\overline{2}$ 4 2.3219 5 2.5850 6 7 2.8074 8 3 9 3.1699 3.3219 3.4594 12 3.5850

Useful table of logs.

- **Giving: 1.2867 bits**
	- □ Agrees with previous calculation

Observation about Zero

- **New method of computing entropy** excludes empty classes from the summation.
- They correspond to zero entries in the body of the frequency table
- If a complete column of the frequency table is zero it means that the categorical attribute never takes one of its possible values at the node under consideration.

Gini Index of Diversity

- Another measure of node coherence
- Given K classes, with the probability of the ith class being p_i , the Gini Index is defined as $1 \sum_{i=1}^n p_i^2$
- **If Its smallest value is zero**

When all the classifications are the same.

- **Largest value** $1 \frac{1}{\nu}$
	- □ Classes are evenly distributed between the instances

 \Box The frequency of each class is $1/K$.

Calculating the GINI index

- **For each non-empty column, form the sum** of the squares of the values in the body of the table and divide by the column sum.
- **Add the values obtained for all the** columns and divide by N
	- □ (the number of instances).
- Subtract the total from 1.

GINI Example Calculation

$$
age = 1: (22 + 22 + 42)/8 = 3
$$

\n
$$
age = 2: (12 + 22 + 52)/8 = 3.75
$$

\n
$$
age = 3: (12 + 12 + 62)/8 = 4.75
$$

- Giving $GINI_{new} = 1 \frac{3+3.27+4.75}{24} = 0.5208$
- Reduction by splitting on age is $0.5382 0.5208 =$ 0.0174

Various GINI Calculations

- **specRx:** $G_{new} = 0.5278$, so the reduction is $0.5382 - 0.5278 = 0.0104$
- astig: G_{new} = 0.4653, so the reduction is 0.5382 $-0.4653 = 0.0729$
- tears: $G_{new} = 0.3264$, so the reduction is 0.5382 $-0.3264 = 0.2118$
- specRx: $G_{new} = 0.5278$, so the reduction is
 $0.5382 0.5278 = 0.0104$

 astig: $G_{new} = 0.4653$, so the reduction is 0.5382
 $0.4653 = 0.0729$

 tears: $G_{new} = 0.3264$, so the reduction is 0.5382
 $0.3264 = 0.2118$

 largest reduction in the value of the Gini Index, i.e. tears.
- **This is the same attribute that was selected** using entropy.

Implicit Bias

- Entropy has bias towards selecting attributes with a large number of values
- **Example: a dataset about people that includes an attribute** 'place of birth'
	- □ Classifies them (as responding to some medical treatment) 'well' 'badly' or 'not at all'.
- Do not expect place of birth to have significant effect on the classification.
- **Information gain selection method will almost certainly choose** it as the first attribute to split.
	- □ Generating one branch for each possible place of birth
	- □ Large branching factor at top of tree.
- **The decision tree will be very large, with many branches** (rules) with very low value for classification.

Gain Ratio for Attribute Selection

- **The the average entropy of the training sets resulting from splitting** on attribute age, 1.2867
- **Entropy of the original training set** $E_{start} = 1.3261$.
- **Information Gain** = $E_{start} E_{new} = 1.3261 1.2867 = 0.0394$
- Gain Ratio = Information Gain/Split Information
	- □ Split Information is a value based on the column sums
- **Each non-zero column sum s contributes** $-(s/N) \log_2(s/N)$ to the Split Information.
- **No. Value of Split Information is**

 $-(8/24) \log_2(8/24) - (8/24) \log_2(8/24) - (8/24) \log_2(8/24)$ $= 1.5850$

Gain Ratio = 0.0394/1.5850 = 0.0249

Properties of Split Information

- Properties of Split Information

Split Information denominator in the Gain

Ratio formula. Ratio formula.
	- □ Higher the value of Split Information, the lower the Gain Ratio.
- Split Information depends on
	- □ The number of values a categorical attribute has
	- □ How uniformly those values are distributed.

Split Information Examples

- 32 instances
- **Consider splitting on an attribute a**

□ Values 1, 2, 3 and 4.

- **Figure 1** Frequency' row in the tables below is the same as the column sum row tables Split Information Examples

• 32 instances

• Consider splitting on an attribute **a**

• Values 1, 2, 3 and 4.

• Frequency' row in the tables below is the same as t

• column sum row tables

• Possibility 1 - Single Attri
-

Split Information = $-(32/32) \times log_2(32/32) = -log_2 1 =$ $\overline{0}$

Split Information Examples

Split Information = $-(16/32) \times log2(16/32)$ – $(16/32) \times \log_2(16/32) = -\log_2(1/2) = 1$

Split Information = $-(16/32) \times log2(16/32) - 2 \times$ $(8/32) \times \log_2(8/32) = -(1/2) \log_2(1/2) - (1/2) \log_2(1/4) = 0.5 + 1 = 1.5$

Split Information Examples

• Split Information = $-(16/32) \times log2(16/32) - (8/32) \times$ $\log(8/32)$ - 2 × (4/32) × $\log(4/32)$ = 0.5 + 0.5 + $0.75 = 1.75$

$a = 1$	$a = 2$	$a = 3$	$a = 4$	
Frequency	8	8	8	8

- Split Information = $-4 \times (8/32) \times \log_2(8/32)$ = $-\log_2(1/4) = \log_2 4 = 2$
	- \Box With *M* attribute values, each equally frequent, the Split Information is \log_2 (irrespective of the frequency value).

Gain Ratio and Branching

Number of Rules Generated by Different Attribute Selection Criteria

- **Gain ratio branches fewer**
	- **u** With exceptions
- **In practice Information Gain more common than Gain Ratio** But C4.5 popular

- Splitting next on Z may result in an attribute value unrepresented
- If attribute Z has four possible values, but the branch at \star offers three possibilities

Missing Branches

- If Z has four values, a, b, c, d new instance with $X =$ 1, $Y = 1, Z = d$ will be unclassified
- It may be considered preferable to leave an unseen instance unclassified rather than to classify it wrongly.
- Easy to provide a facility for any unclassified instances to be given a default classification
	- □ The largest class.

Largest class such that $X = 1, Y = 1$ and $Z = d$