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TIDIDT Constraints

 TIDIDT Requires categorical attributes

 Can take individual values 6.3, 7.2, 8.3, 9.2 as 
categorical

 (For reasons discussed), over splits the training data

 Large number of subsets, each with few instances.

 More common to separate into non-overlapping subsets:
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Discretization - Further Examples

 Convert age to infant, child, young adult, 
adult, middle-aged, old

 Convert height to very_short, short, medium, 
tall, very_tall

 Length, ranging from 0.3 to 6.6, inclusive:

 Divide into equal width intervals





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Equal Width Intervals
 Number of ranges arbitrary

 3, not 4, not 12  

 Perhaps, many, of the values are in a narrow range such 
as 2.35 to 2.45

 A rule involving a test on length < 2.4 would include 
instances where length is say 2.39999 and exclude 
those where length is 2.40001. 

 Unlikely that there is any real difference between 
those values, especially if they were all measured 
imprecisely by different people at different times. 

 If there were no values between say 2.3 and 2.5, a 
test such as length < 2.4 reasonable.
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Equal Frequency Intervals

 Divide length into three ranges, 

 Same number of instances in each of the 
three ranges:







 Same problem at cut points, 

 length of 2.99999 treated differently from 
one of 3.00001
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Oversensitivity

 Whichever cut points are chosen there will always be a potential 
problems with values that fall just below a cut point being treated 
differently from those that fall just above for no principled reason.

 Ideally, find ‘gaps’ in the range of values. 

 If in the length there are many values from 0.3 to 0.4 with the 
next smallest value being 2.2, a test such as length < 1.0 would 
avoid problems around the cut point

 No instances (in the training set) with values close to 1.0.

 The value 1.0 is y arbitrary and a different cut point, e.g. 1.5 
could be chosen

 Unfortunately the same gaps may not occur in unseen test 
data. If there were values such as 0.99, 1.05, 1.49 and 1.51 in 
the test data

 Choice of 1.0 or 1.5 could be of critical importance.
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Problems

 Equal width intervals and the equal frequency 
intervals take no account of the classifications 
when determining where to place the cut points

 One solution:

 Local versus Global Discretization
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Adding Local Discretization to TDIDT

 Convert continuous attributes to a categorical 
ones at each stage of the process 

 (e.g. at each node of the decision tree).

 Approach 1: convert at each step attributes 
according to previously noted methods, namely,

 Equal width

 Equal frequency
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Approach 2

 At each node to convert each continuous attribute 
to a number of alternative categorical attributes. 

 Example: if continuous attribute A has values 
−12.4, −2.4, 3.5, 6.7 and 8.5 

 (each possibly occurring several times) 

 Test A < 3.5 splits the training data into two parts

 Equivalent to a kind of categorical attribute with 
two possible values

 True and false. 

 Pseudo-attribute
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Pseudo-attributes

 Attribute A with n distinct values 1 2 𝑛 there are 
possible corresponding pseudo-attributes 

 2 3 𝑛

 If one of the pseudo-attributes, Age < 27.3, is selected 
at a node, we can consider the continuous attribute 
Age as having been discretized into two intervals with 
cut point 27.3.

 This is a local discretization which does not lead to the 
continuous attribute itself being discarded. 

 Hence there may be a further test such as Age < 14.1 
at a lower level in the ‘yes’ branch descending from 
the test Age < 27.3.
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Algorithmically 
 For each continuous attribute A

 a) Sort the instances into ascending numerical order.

 b) If there are n distinct values 1 2 𝑛 calculate the 
values of information gain (or of GINI index or other measure) 
for each of the corresponding pseudo-attributes 

2 3 𝑛.

 c) Find which of the attribute values gives the largest 
value of information gain (or optimizes some other measure). 

 If this is 𝑖 return the pseudo-attribute , and the value of 
the corresponding measure.

 Calculate the value of information gain (or other measure) for any 
categorical attributes.

 Select the attribute or pseudo-attribute with the largest value of 
information gain (or which optimizes some other measure).
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Pseudo-attributes - Information Gain

 Three stages

 First: Count the number of instances with 
each of the possible classifications in the part 
of the training set under consideration at the 
node. 

 Values do not depend on which attribute is 
subsequently processed and so only have to 
be counted once at each node of the tree.
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Pseudo-attributes – Stage Two

 Work through the continuous attributes one by one. 

 Call attribute 

 Consider all possible pseudo-attributes 
where is one of the values of 

 In the part of the training set under consideration 
at the given node. 

 Call the values of attribute candidate cut points. 

 Call the largest value of measure maxmeasure and 
the value of that gives that largest value the cut 
point for attribute .
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Pseudo-Attributes – Stage Three

 Having found the value of maxmeasure (and 
the corresponding cut points)

 Find the largest and then compare it with the 
values of the measure obtained for any 
categorical attributes to determine which 
attribute or pseudo-attribute to split on at the 
node.
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Example – Golf Data Set
 Count the number of instances with each of the possible 

classifications. 

 9 play and 5 don’t play, a total of 14.

 Process each of the continuous attributes in turn (Stage 2). 

 Two: temperature and humidity. 

 Illustrate Stage 2 using attribute temperature
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Example – Stage 2

 Sort attribute value in 
ascending order

 Construct a two-column 
table

 Attribute value and 
classification

 Sorted instances table

 Twelve distinct values
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Processing Sorted Instance Table
 instances and rows in sorted instances numbered to 

 Work through the table from bottom to top

 Accumulate a count of the number of instances of each 
classification

 As each row is processed it attribute value is compared with 
the value for the row below

 If larger, treat as candidate cut point

 Value of measure is computed using the “frequency table 
method”

 Algorithm returns maxmeasure and cutvalue

 Maxmeasure is the information gain or gain raito (or 
whatever).

 Cutvalue is the value is the attribute value that currently 
maximizes the maxmeasure
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Algorithm - Processing Sorted Instance Table
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Processing the sorted instance table

 golf training set and continuous attribute temperature

 Temperature 64 and class play. 

 Increase the count for class play to 1. 

 Count for class don’t play is zero. 

 Temperature is less than that for the next instance 

 So proceed to construct a frequency table for the 
pseudo-attribute temperature < 65
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Processing second row of sorted instance table
 Temperature of 68, class don’t play

 Create new frequency table

 Update class count(s)

 Column totals
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ChiMerge Algorithm for Global Discretization

 Sort items according to continuous attribute values into 
ascending numerical order

 Construct a frequency table giving the number of 
occurrences of each distinct value of the attribute for 
each possible classification
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ChiMerge Algorithm for Global Discretization
 Interpret each row not just as a single attribute

 As an interval, i.e. a range of values 

 starting at the value, continuing up to but excluding the value 
given in the row below.

 Row labelled 1.3 corresponds to the interval 1.3 ≤ A < 1.4. 
indicate the lowest number in the range of values included in that 
interval. The
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ChiMerge Algorithm for Global Discretization

 Frequency table could be augmented by an 
additional column showing the interval 
corresponding to each classification
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 ChiMerge systematically applies statistical tests to 
combine pairs

 Does not merge intervals that are statistically different

 Implicitly, if a pair is merged if it doesn’t modify outcome, 
classification

 For each pair, tests the hypothesis

 If the hypothesis is confirmed, intervals are merged
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ChiMerge Algorithm for Global Discretization

Hypothesis
The class is independent of which of the two adjacent intervals 
an instance belongs to.



Statistical test: 


ଶ test for independence

 For each pair of adjacent rows, construct a contingency 
table:

 The ‘row sum’ (right-hand column) and the ‘column sum’ 
(bottom row) - ‘marginal totals’. 

 Correspond (respectively) to

 Number of instances for each value of A (i.e. with their 
value of attribute in the corresponding interval) 

 Number of instances in each class for both intervals 
combined. 
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Use of the statistic 


ଶ value is then compared with a threshold value T

 Depends on the number of classes and 

 The level of statistical significance required. 

 (Here) use a significance level of 90% 

 Gives a threshold value of 4.61.

 If we assume that the classification is independent of which 
of the two adjacent intervals an instance belongs to, there 
is a 90% probability that ଶ will be less than 4.61.

 If ଶ is less than 4.61 the hypothesis of independence is 
supported at the 90% significance level 

 The two intervals are merged.
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Calculating the Expected Values and 

 For a given pair of adjacent rows (intervals) the value of 
is calculated using

 The ‘observed’ and ‘expected’ frequency values 

 For each combination of class and row. 

 There are three classes so there are six such 
combinations.

 Observed frequency value, denoted by O, is the 
frequency that  actually occurred. 

 Expected value E is the frequency value that would be 
expected to occur by chance 

 Given the assumption of independence
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 Row is i and the class is j, then let the total number of 
instances in row i be rowsumi and let the total number of 
occurrences of class j be colsumj .

 The grand total number of instances for the two rows 
combined be sum.

 Assuming the hypothesis that the class is independent of 
which of the two rows an instance belongs, calculate the 
expected number of instances in row i for class j thus: 
follows. 

 There are a total of colsumj occurrences of class j in the 
two intervals combined, 

 So class j occurs a proportion of ೕ the time. 
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Calculating the Expected Values and 

 There are a total of colsumj occurrences of class j in the 
two intervals combined, 

 So class j occurs a proportion of ೕ the time. 

 There are rowsumi instances in row i ; expect 
ೕ occurrences of class j in row i.

 To calculate this value for any combination of row and 
class, 

 Take the product of the corresponding row sum and 
column sum 

 Divide by the grand total of the observed values for 
the two rows.
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Expected Values and - Example
 To calculate expected value for any combination of row and class, 

 Take the product of the corresponding row sum and column 
sum 

 Divided by the grand total of the observed values for the two 
rows.

 For the adjacent intervals labelled 8.7 and 12.1 the six values of O 
and E are:

 Expected value for C1 at value is 
଻×ଵଷ

ଵଽ
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Finally calculating 

 Using observed and expected values, calculate 
మ

for 

each of the six combinations

 Value of is the sum of the six values for 
మ

 If the independence hypothesis is correct O and E 
values would be the same and is zero

 Small value for supports hypothesis

 Larger value militates against it

 When exceeds threshold, hypothesis is rejected

 Important adjustment, when replace it with 
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Final Calculation
 at each row is the value for the pair of adjacent row

 That row

 The row below

 Original table has 11 rows, so calculations, 
values

 Each value represents

is the value for that row 

and the one below it 
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Final Step

 Select the smallest value

 Compare it to the threshold 

 If it falls below the threshold, merge it with the row 
immediately below it

 The independence of which the represents

 Smallest value is for row

 New resulting interval is 
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New Table

 Revised frequency table
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Merged



Final Step
 values calculated for the new frequency table

 Only need to do this for rows adjacent to the recently 
merged one

 Smallest is 1.20

 Below the threshold

 Intervals 87.1 and 89.0 merged

 Continue until one reaches a fixed point:

 Smallest is above the threshold
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Final Table

 All possible merging complete






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minIntervals and maxIntervals
 Two extrema:

 Large number of intervals 

 Just one interval

 Large numbers of intervals does little to solve the problem of 
discretization

 Just one interval cannot contribute to a decision making 
process

 Attribute value is independent of classification.

 Two solutions

 Modify significance level hypothesis of independence must 
pass, triggering interval merge.

 Set a minimum and a maximum number of intervals

 minInterval and maxInteval difficult to justify by statistical 
theory
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