
Computer Science 477/577

Association Rule Mining: Apriori

Lecture 12

1

Database and Rule Assumptions
 Assume a database comprised of n transactions

 Each of which is a set of items

 Transaction might correspond to a set of purchases made
by a customer

 Examples

 {milk, cheese, bread}

 {fish, cheese, bread, milk, sugar}

 Goal: association rules

 Examples: ‘buying fish and sugar is often associated with
buying milk and cheese’,

 As before only want rules that meet certain criteria for
‘interestingness’

 Specified later.

2

Database and Rule Assumptions

 Not interested in the quantity of cheese or the
number of cans of dog food etc. bought.

 Do not record the items that a customer did not
buy

 Not interested in rules that include a test of what
was not bought,

 ‘Customers who buy milk but do not buy cheese
generally buy bread’.

 We only look for rules that link items that were
actually bought.

3

Terminology and Notation

 Let m be the number possible items that can be bought

 Let I denote the set of all possible items.

 In practice, m can easily be many hundreds or even
many thousands.

 Depends on whether a company decides to consider (for
example) all the meat it sells as a single item ‘meat’

 Or as a separate item for each type of meat (‘beef’,
‘lamb’, ‘chicken’ etc.)

 Or as a separate item for each type and weight
combination.

 Possible itemset extremely large



4

Convention

 The items in a transaction (or any other itemset) are
listed in standard order

 May be alphabetical or something similar, e.g.

 Always write {cheese, fish, meat},

 Not {meat, fish, cheese} etc.

 Harmless and reduces and simplifies calculations
needed to discover ‘interesting’

5

Database
with eight
transactions

Itemset Support
 Support count of an itemset S, or count the number of transactions

in the database matched by S.

 An itemset S matches a transaction T (which is itself an itemset) if S
is a subset of T

 All the items in S are also in T.

 Example: {bread, milk} matches the transaction {cheese, bread,
fish, milk, wine}.

 If S = {bread, milk} has a support count of 12, written as count(S) =
12, 12 of the transactions in the database contain both the items
bread and milk.

 We define the support of an itemset S, written as support(S), to be
the proportion of itemsets in the database that are matched by S,

 The proportion of transactions that contain all the items in S.

 Support(S) = count(S)/n,

 n is the number of transactions in the database.

6

Association Rules
 Example

 When items c and d

are bought item e is

often bought

 We can write this as the rule

{c,d}→{e}

 Arrow is read as ‘implies’

 A prediction

 The rule cd → e is typical of most if not all of the rules used
in Association Rule Mining

 Not invariably correct.

 Satisfied for transactions for transactions 2, 4 and 7

 But not 6

7

More Terminology and Notation
 Support count of an itemset S, or just the count of an

itemset S,

 The the number of transactions in the database
matched by S.

 An itemset S matches a transaction T (which is itself an
itemset) if S is a subset of T,

 All the items in S are also in T. For example itemset

 {bread, milk} matches the transaction {cheese, bread,
fish, milk, wine}.

 If an itemset S = {bread, milk} has a support count of 12

 count(S) = 12 or count({bread, milk}) = 12,

 12 of the transactions in the database contain both the
items bread and milk.

8

Support

 Support of an itemset S, support(S), is proportion of
itemsets in the database that are matched by S,

 The proportion of transactions that contain all the
items in S.

 Alternatively we can look at it in terms of the frequency
with which the items in S occur together in the database.

 So we have support(S) =

 Where n is the number of transactions in the
database.

9

Association Rules

 Itemsets are sets, but ignore set-theoretic notation.

 The presence of items c, d and e in transactions 2, 4,
and 7 can support other rules such as

 and

 (which do not have to be invariably correct)

 = 4 and .

 8 transactions in the database  calculations are





10

Rule Confidence

 Confidence of a rule can be calculated either by



or by



 Typically reject any rule for which the support is below a
minimum threshold value called minsup

 Typically 0.01 (i.e. 1%)

 Also to reject all rule with confidence below a minimum
threshold value called minconf, typically 0.8 (i.e. 80%).

 For the rule cd → e, the confidence is

 Which is 3/4 = 0.75.

11

Exercise

 Only one rule has confidence about minsup,

12

Generating Rules

 Terminology

 Frequent itemset to mean any itemset for which the
value of support is greater than or equal to minsup.

 The terms supported itemset and large itemset are
often used instead of frequent itemset.

 Basic but very inefficient method for generating rules
from transaction database

 1. Generate all supported itemsets with cardinality
at least two.

 2. For each such itemset generate all the possible rules
with at least one item on each side and retain those for
which confidence .

13

Computing Rules with Basic Method

 The number of possible itemsets is the same as the
number of possible subsets of I, the set of all items, which has
cardinality m.

 There are ௠ such subsets.

 m have a single element

 One has no elements (the empty set).

 Thus the number of itemsets with cardinality at least 2 is
௠ .

 If m is (unrealistically) 20 the number of itemsets
ଶ଴ .

 If is (still unrealistically) 100 the number of itemsets is
ଵ଴଴ ଷ଴

 Generating and testing all rules impossible

14

A Priori Algorithm
 Theorem 1

 If an itemset is supported, all of its (non-empty) subsets are
also supported.

 I.e., every subset of a frequent set is frequent

 Theorem 2

 If ௞ (the empty set) then ௞ାଵ, ௞ାଶ, etc. must also be
empty.

 Generate the supported itemsets in ascending order of
cardinality

 All those with one element first

 Then all those with two elements, etc.

 At each stage, the set ௞ of supported items of cardinality is
generated from the previous set ௞ିଵ

 If at any stage ௞ is , the empty set we know that ௞ାଵ, ௞ାଶ

etc. must also be empty

15

Generating new Rule Candidates

 Use ௞ିଵ to form a candidate set ௞

 Itemsets of cardinality k.

 ௞ must be constructed so as to all the supported itemsets
of cardinality k

 May contain some other itemsets that are not supported.

 Next we need to generate ௞ as a subset of ௞.

 Discard some of the members of ௞ as possible members
of ௞ by inspecting the members of ௞ିଵ.

 Check the remainder against the transactions in the
database to establish support values.

 Only those itemsets with support greater than or equal to
minsup are copied from ௞ into ௞.

16

Pseudo-code

 To start the process we construct ଵ,

 Set of all itemsets comprising just a single item,

 Make a pass through the database counting the number of
transactions that match each of these itemsets.

 Divide these counts by the number of transactions in the
database

 Checking for minsup each single-element itemset.

 Discard all those with support < minsup to yield ௞.

 Continue until ௞ is empty.

17

AprioriGen - Generating from
 Assume that ସ is the list

{{p, q, r, s}, {p, q, r, t}, {p, q, r, z}, {p, q, s, z}, {p, r, s, z}, {q, r, s,
z}, {r, s, w, x}, {r, s, w, z}, {r, t, v, x}, {r, t, v, z}, {r, t, x, z}, {r, v,
x, y}, {r, v, x, z}, {r, v, y, z}, {r, x, y, z}, {t, v, x, z}, {v, x, y, z}}

 Seventeen itemsets of cardinality four.

 Six pairs of elements that have the first three elements in
common.

 Each combination causes to be placed into ହ

18

AprioriGen

 The pruning step where each of the subsets of
cardinality four of the itemsets in are examined:

 Eliminate first, third and fourth itemsets from , making
the final version of candidate set

 The three itemsets in checked against the database

 Establish which are supported.

19

Example

 Assume a database with 100 items and a large number
of transactions.

 Construct

 Itemsets with a single member.

 A pass though the database to establish the support
count for each of the 100 itemsets in and from these
calculate ,

 Set of supported itemsets

 Comprise just a single member

 Assume that has just 8 of these members, namely {a},
{b}, {c}, {d}, {e}, {f}, {g} and {h}.

 Can now form candidate itemsets of cardinality two.

20

Generating two-item Sets

 In generating from all pairs of (single-item) itemsets
in are considered to match at the ‘join’ step,

 Nothing to the left of the rightmost element of each
one that might fail to match.

 In this case the candidate generation algorithm gives us
as members of all the itemsets with two members
drawn from the eight items a, b, c, . . . , h.

 Candidate itemset of two elements cannot include any of
the other 92 items from the original set of 100, e.g. {a, z}

 For each, one of its subsets would not be supported.

21

 There are 28 possible itemsets of
cardinality 2 that can be formed from the
items a, b, c, . . . , h.

 They are
 {a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {a, g}, {a, h},

{b, c}, {b, d}, {b, e}, {b, f}, {b, g}, {b, h}, {c, d},
{c, e}, {c, f}, {c, g}, {c, h}, {d, e}, {d, f}, {d, g}, {d,
h}, {e, f}, {e, g}, {e, h}, {f, g}, {f, h}, {g, h}.

22

Generating two-item Sets

A Second Pass

 Reject any itemsets that have support less than minsup.

 Assume only 6 of the 28 itemsets with two elements turn
out to be supported,

 = {{a, c}, {a, d}, {a, h}, {c, g}, {c, h}, {g, h}}.

 The algorithm for generating now yields just four
members

 {a, c, d}, {a, c, h}, {a, d, h}, {c, g, h}.

 Check subsets are supported.

 Itemsets {a, c, d} and {a, d, h} fail

 Subsets {c, d} and {d, h} are not members of .

 Possible members: {a, c, h} and {c, g, h} are possible
members of

23

Third Pass
 A third pass through the database finds the itemsets {a, c, h}

and {c, g, h}.

 Assume they both turn out to be supported,

 So ଷ = {{a, c, h}, {c, g, h}}.

 We now need to calculate C4.

 No members,

 Two members of ଷ have no element in common.

 Since ଷ is empty, by Theorem 2, ଷ must also be empty

 Found all the itemsets of cardinality at least two with three
passes through the database.

 Needed to find the support counts for

 A vast improvement over checking through the total number of
possible itemsets for 100 items


ଷ଴

24

Generating Rules

 The set of all supported itemsets with at least
two members is the union of and

 {{a, c}, {a, d}, {a, h}, {c, g}, {c, h}, {g, h}, {a, c,
h}, {c, g, h}}.

 Eight itemsets.

 Next need to generate the candidate rules

 Determine which have a confidence value
greater than or equal to minconf.

25

Improvements
 Apriori has substantial efficiency problems

 When there are a large number of transactions,

 Large number of items

 Or both.

 Main problems is the large number of candidate itemsets
generated during the early stages of the process.

 If the number of supported itemsets of cardinality one (the
members of ଵ) is a large N,

 Number of candidate itemsets in ଶ,
ே ேିଵ

ଶ
can be very large.

 A fairly large (but not huge) database may comprise over 1,000
items and 100,000 transactions.

 800 supported itemsets in ଵ, of itemsets in ଶ is
, which is approximately .

26

Generating Rules for a Supported Itemset

 If has elements, generate possible rules

 Check their confidence value.

 Method: generate all possible right-hand sides in turn.

 Each one must have at least one and at most elements.

 Elements not on the RHS must be on the LHS

 Example: for {c,d,e}: 6 possible rules.

 The number of ways of selecting i items from the k in a
supported itemset of cardinality k for the right-hand side of a

rule is given by
௞!

௞ି௜ !௜!

 Also denoted 𝑖 ௞

 Total number of rules ௞ିଵ
௜ୀଵ

27

Reducing Rules
 If is, , this number is manageable.

 For there are ଵ଴ possible rules.

 For it is

 Theorem 3

 Transferring members of a supported itemset from the left-
hand side of a rule to the right-hand side cannot increase the
value of rule confidence

 A rule is confident if the confidence of a rule ≥ minconf

 Otherwise, unconfident.

 Theorem 3 two important results:

 Any superset of an unconfident right-hand itemset is
unconfident.

 Any (non-empty) subset of a confident right-hand itemset is
confident

28

Reducing Rules

 Any superset of an unconfident right-hand itemset is
unconfident.

 Any (non-empty) subset of a confident right-hand itemset is
confident

 Search space of RHS reduced

 Similar to Apriori

 Considerable reduction in the number of candidate rules

 Generate confident right-hand side itemsets of increasing
cardinality

 If at any stage there are no more confident itemsets of a
certain cardinality there cannot be any of larger cardinality

 Rule generation process can stop.

29

