Computer Science 477/577

Association Rule Mining: Apriori

Lecture 12

Database and Rule Assumptions

- Assume a database comprised of *n* transactions
 - Each of which is a set of *items*
- Transaction might correspond to a set of purchases made by a customer
 - Examples
 - {milk, cheese, bread}
 - {fish, cheese, bread, milk, sugar}
- Goal: *association rules*
 - Examples: 'buying fish and sugar is often associated with buying milk and cheese',
- As before only want rules that meet certain criteria for 'interestingness'
 - Specified later.

Database and Rule Assumptions

- Not interested in the quantity of cheese or the number of cans of dog food etc. bought.
- Do not record the items that a customer did not buy
- Not interested in rules that include a test of what was *not* bought,
 - Customers who buy milk but do not buy cheese generally buy bread'.
 - We only look for rules that link items that were actually bought.

Terminology and Notation

- Let *m* be the number possible items that can be bought
- Let / denote the set of all possible items.
- In practice, *m* can easily be many hundreds or even many thousands.
- Depends on whether a company decides to consider (for example) all the meat it sells as a single item 'meat'
 - Or as a separate item for each type of meat ('beef', 'lamb', 'chicken' etc.)
 - Or as a separate item for each type and weight combination.
- Possible itemset extremely large
 - $\square 2^{|I|}$

Convention

- The items in a transaction (or any other itemset) are listed in standard order
 - May be alphabetical or something similar, e.g.
 - Always write {cheese, fish, meat},
 - Not {meat, fish, cheese} etc.
- Harmless and reduces and simplifies calculations needed to discover 'interesting'

Transaction number	Transactions (itemsets)
1	{a, b, c}
2	$\{a, b, c, d, e\}$
3	{b}
4	$\{c, d, e\}$
5	{c}
6	{b, c, d}
7	$\{c, d, e\}$
8	$\{c, e\}$

Database with eight transactions

Itemset Support

- Support count of an itemset S, or count the number of transactions in the database matched by S.
- An itemset S matches a transaction T (which is itself an itemset) if S is a subset of T
 - All the items in S are also in T.
 - Example: {bread, milk} matches the transaction {cheese, bread, fish, milk, wine}.
- If S = {bread, milk} has a support count of 12, written as count(S) = 12, 12 of the transactions in the database contain both the items bread and milk.
- We define the *support* of an itemset S, written as support(S), to be the proportion of itemsets in the database that are matched by S,
 - □ The proportion of transactions that contain all the items in S.
 - Support(S) = count(S)/n,
 - *n* is the number of transactions in the database.

Association Rules

- Example
 - When items c and d
 are bought item e is
 often bought
- We can write this as the rule

Transaction number	Transactions (itemsets)
1	{a, b, c}
2	$\{a, b, c, d, e\}$
3	{b}
4	$\{c, d, e\}$
5	{c}
6	{b, c, d}
7	$\{c, d, e\}$
8	{c, e}

- Arrow is read as 'implies'
- A prediction
- The rule cd → e is typical of most if not all of the rules used in Association Rule Mining
 - Not invariably correct.
 - Satisfied for transactions for transactions 2, 4 and 7
 - But not 6

More Terminology and Notation

- Support count of an itemset S, or just the count of an itemset S,
 - The the number of transactions in the database matched by S.
- An itemset S matches a transaction T (which is itself an itemset) if S is a subset of T,
 - □ All the items in *S* are also in *T*. For example itemset
 - Image: Second Science (Second Science) fish, milk, wine}.
- If an itemset S = {bread, milk} has a support count of 12
 count(S) = 12 or count({bread, milk}) = 12,
- 12 of the transactions in the database contain both the items bread and milk.

Support

- Support of an itemset S, support(S), is proportion of itemsets in the database that are matched by S,
 - The proportion of transactions that contain all the items in S.
- Alternatively we can look at it in terms of the frequency with which the items in S occur together in the database.
- So we have support(S) = $\frac{count(S)}{n}$
 - Where *n* is the number of transactions in the database.

Association Rules

- Itemsets are sets, but ignore set-theoretic notation.
- The presence of items c, d and e in transactions 2, 4, and 7 can support other rules such as

 $c \rightarrow ed$

and

$$e \rightarrow cd$$

(which do not have to be invariably correct)

- count(L) = 4 and $count(L \cup R) = 3$.
- 8 transactions in the database \rightarrow calculations are
 - $\Box Support(L) = count(L)/8 = 4/8$
 - $\Box Support(L \cup R) = count(L \cup R)/8 = 3/8$

Rule Confidence

Confidence of a rule can be calculated either by

• Confidence $(L \rightarrow R) = \operatorname{count}(L \cup R)/\operatorname{count}(L)$

or by

- □ Confidence($L \rightarrow R$) = support($L \cup R$)/support(L)
- Typically reject any rule for which the support is below a minimum threshold value called *minsup*

Typically 0.01 (i.e. 1%)

- Also to reject all rule with confidence below a minimum threshold value called *minconf*, typically 0.8 (i.e. 80%).
- For the rule cd → e, the confidence is count({c, d, e})/ count({c, d})

□ Which is 3/4 = 0.75.

Exercise

• Only one rule has confidence about minsup, ≥ 0.8

Rule $L \to R$	$\operatorname{count}(L\cup R)$	$\operatorname{count}(L)$	confidence $(L \to R)$
de ightarrow c	3	3	1.0
ce ightarrow d	3	4	0.75
cd ightarrow e	3	4	0.75
e ightarrow cd	3	4	0.75
$d \rightarrow ce$	3	4	0.75
c ightarrow de	3	7	0.43

Generating Rules

- Terminology
 - Frequent itemset to mean any itemset for which the value of support is greater than or equal to minsup.
 - The terms supported itemset and large itemset are often used instead of frequent itemset.
- Basic but very inefficient method for generating rules from transaction database
- 1. Generate all supported itemsets L ∪ R with cardinality at least two.
- 2. For each such itemset generate all the possible rules with at least one item on each side and retain those for which confidence ≥ minconf.

Computing Rules with Basic Method

- The number of possible itemsets L ∪ R is the same as the number of possible subsets of I, the set of all items, which has cardinality m.
 - There are 2^m such subsets.
 - □ *m* have a single element
 - One has no elements (the empty set).
- Thus the number of itemsets $L \cup R$ with cardinality at least 2 is $2^m m 1$.
- If *m* is (unrealistically) 20 the number of itemsets $L \cup R$ $2^{20} - 20 - 1 = 1,048,555.$
- If is (still unrealistically) 100 the number of itemsets $L \cup R$ is $2^{100} - 100 - 1 \approx 10^{30}$
- Generating and testing all rules impossible

A Priori Algorithm

- Theorem 1
 - If an itemset is supported, all of its (non-empty) subsets are also supported.
 - I.e., every subset of a frequent set is frequent
- Theorem 2
 - □ If $L_k = \emptyset$ (the empty set) then L_{k+1} , L_{k+2} , etc. must also be empty.
- Generate the supported itemsets in ascending order of cardinality
 - All those with one element first
 - □ Then all those with two elements, etc.
- At each stage, the set L_k of supported items of cardinality k is generated from the previous set L_{k-1}
- If at any stage L_k is \emptyset , the empty set we know that L_{k+1} , L_{k+2} etc. must also be empty

Generating new Rule Candidates

- Use L_{k-1} to form a *candidate set* C_k
 - □ Itemsets of cardinality *k*.
- C_k must be constructed so as to all the supported itemsets of cardinality k

May contain some other itemsets that are not supported.

- Next we need to generate L_k as a subset of C_k .
- Discard some of the members of C_k as possible members of L_k by inspecting the members of L_{k-1} .
- Check the remainder against the transactions in the database to establish support values.
- Only those itemsets with support greater than or equal to minsup are copied from C_k into L_k .

$\begin{array}{l} \mbox{Pseudo-code} \\ \hline \mbox{Create } L_1 = \mbox{set of supported itemsets of cardinality one} \\ & \mbox{Set k to 2} \\ & \mbox{while } (L_{k-1} \neq \emptyset) \left\{ \\ & \mbox{Create } C_k \mbox{ from } L_{k-1} \\ & \mbox{Prune all the itemsets in } C_k \mbox{ that are not} \\ & \mbox{supported, to create } L_k \\ & \mbox{Increase k by 1} \\ \end{array} \right\} \\ & \mbox{The set of all supported itemsets is } L_1 \cup L_2 \cup \cdots \cup L_k \end{array}$

- To start the process we construct C_1 ,
 - Set of all itemsets comprising just a single item,
 - Make a pass through the database counting the number of transactions that match each of these itemsets.
 - Divide these counts by the number of transactions in the database
 - Checking for minsup each single-element itemset.
 - □ Discard all those with support < minsup to yield L_k .
- Continue until L_k is empty.

AprioriGen - Generating C_k from L_k

Assume that L₄ is the list

 $\{ \{p, q, r, s\}, \{p, q, r, t\}, \{p, q, r, z\}, \{p, q, s, z\}, \{p, r, s, z\}, \{q, r, s, z\}, \{r, s, w, x\}, \{r, s, w, z\}, \{r, t, v, x\}, \{r, t, v, z\}, \{r, t, x, z\}, \{r, v, x, z\}, \{r, v, y, z\}, \{r, x, y, z\}, \{r, v, x, z\}, \{v, x, y, z\} \}$

- Seventeen itemsets of cardinality four.
- Six pairs of elements that have the first three elements in common.
- Each combination causes to be placed into C₅

First itemset	Second itemset	Contribution to C_5
$\{p,q,r,s\}$	$\{p,q,r,t\}$	$\{p,q,r,s,t\}$
$\{p,q,r,s\}$	$\{p,q,r,z\}$	$\{p,q,r,s,z\}$
$\{p,q,r,t\}$	$\{p,q,r,z\}$	$\{p,q,r,t,z\}$
$\{r, s, w, x\}$	$\{r, s, w, z\}$	$\{r, s, w, x, z\}$
$\{r,t,v,x\}$	$\{r, t, v, z\}$	$\{r, t, v, x, z\}$
$\{r, v, x, y\}$	$\{r, v, x, z\}$	$\{r, v, x, y, z\}$

AprioriGen

The pruning step where each of the subsets of cardinality four of the itemsets in C₅ are examined:

Itemset in C_5	Subsets all in L_4 ?
$\{p,q,r,s,t\}$	No, e.g. $\{p,q,s,t\}$ is not a member of L_4
$\{p,q,r,s,z\}$	Yes
$\{p,q,r,t,z\}$	No, e.g. $\{p, q, t, z\}$ is not a member of L_4
$\{r, s, w, x, z\}$	No, e.g. $\{r, s, x, z\}$ is not a member of L_4
$\{r, t, v, x, z\}$	Yes
$\{r, v, x, y, z\}$	Yes

 Eliminate first, third and fourth itemsets from C₅, making the final version of candidate set C₅

 $\{\{p,q,r,s,z\},\{r,t,v,x,z\},\{r,v,x,y,z\}\}$

• The three itemsets in C_5 checked against the database

Establish which are supported.

Example

- Assume a database with 100 items and a large number of transactions.
- Construct C₁
 - Itemsets with a single member.
- A pass though the database to establish the support count for each of the 100 itemsets in C₁ and from these calculate L₁,
 - Set of supported itemsets
 - Comprise just a single member
- Assume that L₁ has just 8 of these members, namely {a}, {b}, {c}, {d}, {e}, {f}, {g} and {h}.
- Can now form candidate itemsets of cardinality two.

Generating two-item Sets

- In generating C₁ from L₁ all pairs of (single-item) itemsets in L₁ are considered to match at the 'join' step,
 - Nothing to the left of the rightmost element of each one that might fail to match.
- In this case the candidate generation algorithm gives us as members of C₁ all the itemsets with two members drawn from the eight items a, b, c, ..., h.
- Candidate itemset of two elements cannot include any of the other 92 items from the original set of 100, e.g. {a, z}
 - □ For each, one of its subsets would not be supported.

Generating two-item Sets

There are 28 possible itemsets of cardinality 2 that can be formed from the items a, b, c, . . . , h.

They are

{a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {a, g}, {a, h}, {b, c}, {b, d}, {b, e}, {b, f}, {b, g}, {b, h}, {c, d}, {c, e}, {c, f}, {c, g}, {c, h}, {d, e}, {d, f}, {d, g}, {d, h}, {e, f}, {e, g}, {e, h}, {f, g}, {f, h}, {g, h}.

A Second Pass

- Reject any itemsets that have support less than *minsup*.
- Assume only 6 of the 28 itemsets with two elements turn out to be supported,

 $\Box L_2 = \{\{a, c\}, \{a, d\}, \{a, h\}, \{c, g\}, \{c, h\}, \{g, h\}\}.$

- The algorithm for generating C₃ now yields just four members
 - □ {a, c, d}, {a, c, h}, {a, d, h}, {c, g, h}.
- Check subsets are supported.
 - Itemsets {a, c, d} and {a, d, h} fail
 - Subsets {c, d} and {d, h} are not members of L_2 .
- Possible members: {a, c, h} and {c, g, h} are possible members of L₃

Third Pass

- A third pass through the database finds the itemsets {a, c, h} and {c, g, h}.
- Assume they both turn out to be supported,

• So $L_3 = \{\{a, c, h\}, \{c, g, h\}\}$.

- We now need to calculate C_4 .
- No members,

• Two members of L_3 have no element in common.

- Since C_3 is empty, by Theorem 2, L_3 must also be empty
- Found all the itemsets of cardinality at least two with three passes through the database.
- Needed to find the support counts for 100 + 28 + 2 = 130
 - A vast improvement over checking through the total number of possible itemsets for 100 items
 - 10³⁰

Generating Rules

- The set of all supported itemsets with at least two members is the union of L₂ and L₃
 - {{a, c}, {a, d}, {a, h}, {c, g}, {c, h}, {g, h}, {a, c, h}, {c, g, h}.
- Eight itemsets.
- Next need to generate the candidate rules
 - Determine which have a confidence value greater than or equal to *minconf*.

Improvements

- Apriori has substantial efficiency problems
 - When there are a large number of transactions,
 - Large number of items
 - Or both.
- Main problems is the large number of candidate itemsets generated during the early stages of the process.
- If the number of supported itemsets of cardinality one (the members of L_1) is a large N,
 - Number of candidate itemsets in C_2 , $\frac{N(N-1)}{2}$ can be very large.
- A fairly large (but not huge) database may comprise over 1,000 items and 100,000 transactions.
 - 800 supported itemsets in L_1 , of itemsets in C_2 is 800 × 799/2, which is approximately 320,000.

Generating Rules for a Supported Itemset

- If L ∪ R has k elements, generate possible rules L → R
 Check their confidence value.
- Method: generate all possible right-hand sides in turn.
- Each one must have at least one and at most k 1 elements.
- Elements not on the RHS must be on the LHS
- Example: for {c,d,e}: 6 possible rules.
- The number of ways of selecting *i* items from the *k* in a supported itemset of cardinality *k* for the right-hand side of a rule is given by $\binom{i}{k} = \frac{k!}{(k-i)!i!}$
 - Also denoted $_iC_k$

• Total number of rules
$$\sum_{i=1}^{k-1} \binom{k}{k-1}$$

Reducing Rules

- If k is, 10, this number is manageable.
- For k = 10 there are $2^{10} 2 = 1022$ possible rules.
- For *k* = 20 it is 1,048,574
- Theorem 3
- Transferring members of a supported itemset from the lefthand side of a rule to the right-hand side cannot increase the value of rule confidence
- A rule is *confident* if the confidence of a rule ≥ *minconf*
 - Otherwise, unconfident.
- Theorem 3 two important results:
 - Any superset of an unconfident right-hand itemset is unconfident.
 - Any (non-empty) subset of a confident right-hand itemset is confident

Reducing Rules

- Any superset of an unconfident right-hand itemset is unconfident.
- Any (non-empty) subset of a confident right-hand itemset is confident
- Search space of RHS reduced
 - Similar to Apriori
 - Considerable reduction in the number of candidate rules
- Generate confident right-hand side itemsets of increasing cardinality
- If at any stage there are no more confident itemsets of a certain cardinality there cannot be any of larger cardinality
 - Rule generation process can stop.