56 lines
2.0 KiB
Python
56 lines
2.0 KiB
Python
|
|
from torch.utils.data import DataLoader
|
|
from torch.optim import AdamW
|
|
from {{cookiecutter.module_name}}.training.runner import Runner
|
|
from {{cookiecutter.module_name}} import config, logger
|
|
|
|
|
|
def run(evaluate=False):
|
|
# Initialize the training set and a dataloader to iterate over the dataset
|
|
# train_set = GenericDataset()
|
|
dataset = get_dataset(evaluate)
|
|
dataloader = DataLoader(dataset, batch_size=config.training.batch_size, shuffle=True)
|
|
|
|
model = get_model(name=config.model.name)
|
|
|
|
optimizer = AdamW(model.parameters(), lr=config.training.learning_rate)
|
|
|
|
# Create a runner that will handle
|
|
runner = Runner(
|
|
dataset=dataset,
|
|
dataloader=dataloader,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
)
|
|
|
|
# Train the model
|
|
for _ in range(config.training.epochs):
|
|
# Run one loop of training and record the average loss
|
|
for step in runner.step():
|
|
logger.info(f"{step}")
|
|
|
|
def get_model(name='vgg11'):
|
|
from {{cookiecutter.module_name}}.model.linear import DNN
|
|
from {{cookiecutter.module_name}}.model.cnn import VGG11
|
|
if name == 'vgg11':
|
|
return VGG11(config.data.in_channels, config.data.num_classes)
|
|
else:
|
|
# Create the model and optimizer and cast model to the appropriate GPU
|
|
in_features, out_features = dataset.in_out_features()
|
|
model = DNN(in_features, config.model.hidden_size, out_features)
|
|
return model.to(config.training.device)
|
|
|
|
|
|
def get_dataset(evaluate=False):
|
|
# Usage
|
|
from {{cookiecutter.module_name}}.data.dataset import MnistDataset
|
|
from torchvision import transforms
|
|
csv_file_path = config.data.train_path if not evaluate else config.data.test_path
|
|
transform = transforms.Compose([
|
|
transforms.ToTensor(), # Converts a PIL Image or numpy.ndarray to a FloatTensor and scales the image's pixel intensity values to the [0., 1.] range
|
|
transforms.Normalize((0.1307,), (0.3081,)) # Normalize using the mean and std specific to MNIST
|
|
])
|
|
|
|
dataset = MnistDataset(csv_file_path)
|
|
return dataset
|