2019-08-23 08:47:19 -07:00
|
|
|
#
|
|
|
|
# OtterTune - test_gpr.py
|
|
|
|
#
|
|
|
|
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
|
|
|
#
|
|
|
|
import unittest
|
2019-11-30 12:58:25 -08:00
|
|
|
import random
|
2019-11-29 16:39:20 -08:00
|
|
|
import numpy as np
|
2019-11-30 12:58:25 -08:00
|
|
|
import gpflow
|
|
|
|
import tensorflow as tf
|
2019-08-23 08:47:19 -07:00
|
|
|
from sklearn import datasets
|
|
|
|
from analysis.gp import GPRNP
|
|
|
|
from analysis.gp_tf import GPR
|
2019-11-29 16:39:20 -08:00
|
|
|
from analysis.gp_tf import GPRGD
|
2019-11-30 12:58:25 -08:00
|
|
|
from analysis.gpr import gpr_models
|
|
|
|
from analysis.gpr.optimize import tf_optimize
|
2020-01-22 04:38:18 -08:00
|
|
|
from analysis.gpr.predict import gpflow_predict
|
2019-08-23 08:47:19 -07:00
|
|
|
|
|
|
|
# test numpy version GPR
|
|
|
|
class TestGPRNP(unittest.TestCase):
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def setUpClass(cls):
|
|
|
|
super(TestGPRNP, cls).setUpClass()
|
|
|
|
boston = datasets.load_boston()
|
|
|
|
data = boston['data']
|
|
|
|
X_train = data[0:500]
|
|
|
|
X_test = data[500:]
|
|
|
|
y_train = boston['target'][0:500].reshape(500, 1)
|
|
|
|
cls.model = GPRNP(length_scale=1.0, magnitude=1.0)
|
|
|
|
cls.model.fit(X_train, y_train, ridge=1.0)
|
|
|
|
cls.gpr_result = cls.model.predict(X_test)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_ypreds(self):
|
2019-08-23 08:47:19 -07:00
|
|
|
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
|
|
|
|
expected_ypreds = [0.0181, 0.0014, 0.0006, 0.0015, 0.0039, 0.0014]
|
|
|
|
self.assertEqual(ypreds_round, expected_ypreds)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_sigmas(self):
|
2019-08-23 08:47:19 -07:00
|
|
|
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
|
2019-11-29 16:39:20 -08:00
|
|
|
expected_sigmas = [1.4142, 1.4142, 1.4142, 1.4142, 1.4142, 1.4142]
|
2019-08-23 08:47:19 -07:00
|
|
|
self.assertEqual(sigmas_round, expected_sigmas)
|
|
|
|
|
|
|
|
|
|
|
|
# test Tensorflow version GPR
|
|
|
|
class TestGPRTF(unittest.TestCase):
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def setUpClass(cls):
|
|
|
|
super(TestGPRTF, cls).setUpClass()
|
|
|
|
boston = datasets.load_boston()
|
|
|
|
data = boston['data']
|
|
|
|
X_train = data[0:500]
|
|
|
|
X_test = data[500:]
|
|
|
|
y_train = boston['target'][0:500].reshape(500, 1)
|
2019-11-30 00:30:35 -08:00
|
|
|
cls.model = GPR(length_scale=1.0, magnitude=1.0, ridge=1.0)
|
|
|
|
cls.model.fit(X_train, y_train)
|
2019-08-23 08:47:19 -07:00
|
|
|
cls.gpr_result = cls.model.predict(X_test)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_ypreds(self):
|
2019-08-23 08:47:19 -07:00
|
|
|
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
|
|
|
|
expected_ypreds = [0.0181, 0.0014, 0.0006, 0.0015, 0.0039, 0.0014]
|
|
|
|
self.assertEqual(ypreds_round, expected_ypreds)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_sigmas(self):
|
2019-08-23 08:47:19 -07:00
|
|
|
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
|
2019-11-29 16:39:20 -08:00
|
|
|
expected_sigmas = [1.4142, 1.4142, 1.4142, 1.4142, 1.4142, 1.4142]
|
|
|
|
self.assertEqual(sigmas_round, expected_sigmas)
|
|
|
|
|
|
|
|
|
2020-01-20 00:09:01 -08:00
|
|
|
# test GPFlow version GPR
|
2020-01-22 04:38:18 -08:00
|
|
|
class TestGPRGPFlow(unittest.TestCase):
|
2020-01-20 00:09:01 -08:00
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def setUpClass(cls):
|
2020-01-22 04:38:18 -08:00
|
|
|
super(TestGPRGPFlow, cls).setUpClass()
|
2020-01-20 00:09:01 -08:00
|
|
|
boston = datasets.load_boston()
|
|
|
|
data = boston['data']
|
|
|
|
X_train = data[0:500]
|
|
|
|
X_test = data[500:]
|
|
|
|
y_train = boston['target'][0:500].reshape(500, 1)
|
|
|
|
|
|
|
|
model_kwargs = {'lengthscales': 1, 'variance': 1, 'noise_variance': 1}
|
|
|
|
tf.reset_default_graph()
|
|
|
|
graph = tf.get_default_graph()
|
|
|
|
gpflow.reset_default_session(graph=graph)
|
|
|
|
cls.m = gpr_models.create_model('BasicGP', X=X_train, y=y_train,
|
|
|
|
**model_kwargs)
|
|
|
|
cls.gpr_result = gpflow_predict(cls.m.model, X_test)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_ypreds(self):
|
2020-01-20 00:09:01 -08:00
|
|
|
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
|
|
|
|
expected_ypreds = [0.0181, 0.0014, 0.0006, 0.0015, 0.0039, 0.0014]
|
|
|
|
self.assertEqual(ypreds_round, expected_ypreds)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_sigmas(self):
|
2020-01-20 00:09:01 -08:00
|
|
|
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
|
|
|
|
expected_sigmas = [1.4142, 1.4142, 1.4142, 1.4142, 1.4142, 1.4142]
|
|
|
|
self.assertEqual(sigmas_round, expected_sigmas)
|
|
|
|
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
# test GPFlow version Gradient Descent
|
|
|
|
class TestGDGPFlow(unittest.TestCase):
|
2019-11-29 16:39:20 -08:00
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def setUpClass(cls):
|
2020-01-22 04:38:18 -08:00
|
|
|
super(TestGDGPFlow, cls).setUpClass()
|
2019-11-30 12:58:25 -08:00
|
|
|
boston = datasets.load_boston()
|
|
|
|
data = boston['data']
|
|
|
|
X_train = data[0:500]
|
|
|
|
X_test = data[500:501]
|
|
|
|
y_train = boston['target'][0:500].reshape(500, 1)
|
|
|
|
X_min = np.min(X_train, 0)
|
|
|
|
X_max = np.max(X_train, 0)
|
|
|
|
|
|
|
|
random.seed(0)
|
|
|
|
np.random.seed(0)
|
|
|
|
tf.set_random_seed(0)
|
|
|
|
|
|
|
|
model_kwargs = {}
|
|
|
|
opt_kwargs = {}
|
|
|
|
opt_kwargs['learning_rate'] = 0.01
|
|
|
|
opt_kwargs['maxiter'] = 10
|
|
|
|
opt_kwargs['bounds'] = [X_min, X_max]
|
|
|
|
opt_kwargs['ucb_beta'] = 1.0
|
|
|
|
|
|
|
|
tf.reset_default_graph()
|
|
|
|
graph = tf.get_default_graph()
|
|
|
|
gpflow.reset_default_session(graph=graph)
|
|
|
|
cls.m = gpr_models.create_model('BasicGP', X=X_train, y=y_train, **model_kwargs)
|
|
|
|
cls.gpr_result = tf_optimize(cls.m.model, X_test, **opt_kwargs)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_ypreds(self):
|
2019-11-30 12:58:25 -08:00
|
|
|
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
|
|
|
|
expected_ypreds = [0.5272]
|
|
|
|
self.assertEqual(ypreds_round, expected_ypreds)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_sigmas(self):
|
2019-11-30 12:58:25 -08:00
|
|
|
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
|
|
|
|
expected_sigmas = [1.4153]
|
|
|
|
self.assertEqual(sigmas_round, expected_sigmas)
|
|
|
|
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
# test Tensorflow version Gradient Descent
|
|
|
|
class TestGDTF(unittest.TestCase):
|
2019-11-30 12:58:25 -08:00
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def setUpClass(cls):
|
2020-01-22 04:38:18 -08:00
|
|
|
super(TestGDTF, cls).setUpClass()
|
2019-11-30 12:58:25 -08:00
|
|
|
boston = datasets.load_boston()
|
|
|
|
data = boston['data']
|
|
|
|
X_train = data[0:500]
|
|
|
|
X_test = data[500:501]
|
|
|
|
y_train = boston['target'][0:500].reshape(500, 1)
|
|
|
|
Xmin = np.min(X_train, 0)
|
|
|
|
Xmax = np.max(X_train, 0)
|
|
|
|
random.seed(0)
|
|
|
|
np.random.seed(0)
|
|
|
|
tf.set_random_seed(0)
|
|
|
|
|
|
|
|
cls.model = GPRGD(length_scale=2.0, magnitude=1.0, max_iter=10, learning_rate=0.01,
|
|
|
|
ridge=1.0, hyperparameter_trainable=True, sigma_multiplier=1.0)
|
|
|
|
cls.model.fit(X_train, y_train, Xmin, Xmax)
|
|
|
|
cls.gpr_result = cls.model.predict(X_test)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_ypreds(self):
|
2019-11-30 12:58:25 -08:00
|
|
|
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
|
|
|
|
expected_ypreds = [0.5272]
|
|
|
|
self.assertEqual(ypreds_round, expected_ypreds)
|
|
|
|
|
2020-01-22 04:38:18 -08:00
|
|
|
def test_sigmas(self):
|
2019-11-30 12:58:25 -08:00
|
|
|
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
|
|
|
|
expected_sigmas = [1.4153]
|
|
|
|
self.assertEqual(sigmas_round, expected_sigmas)
|