2019-08-23 08:47:19 -07:00
|
|
|
#
|
|
|
|
# OtterTune - test_tasks.py
|
|
|
|
#
|
|
|
|
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
|
|
|
#
|
|
|
|
import copy
|
|
|
|
import numpy as np
|
|
|
|
from django.test import TestCase, override_settings
|
|
|
|
from django.db import transaction
|
2019-12-15 12:51:57 -08:00
|
|
|
from website.models import (Workload, PipelineRun, PipelineData, Project,
|
2019-08-23 08:47:19 -07:00
|
|
|
Result, Session, DBMSCatalog, Hardware)
|
|
|
|
from website.tasks.periodic_tasks import (run_background_tasks,
|
|
|
|
aggregate_data,
|
|
|
|
run_workload_characterization,
|
|
|
|
run_knob_identification)
|
|
|
|
from website.types import PipelineTaskType, WorkloadStatusType
|
|
|
|
|
|
|
|
CELERY_TEST_RUNNER = 'djcelery.contrib.test_runner.CeleryTestSuiteRunner'
|
|
|
|
|
|
|
|
|
|
|
|
@override_settings(CELERY_ALWAYS_EAGER=True, TEST_RUNNER=CELERY_TEST_RUNNER)
|
|
|
|
class BackgroundTestCase(TestCase):
|
|
|
|
|
|
|
|
fixtures = ['test_website.json']
|
|
|
|
serialized_rollback = True
|
|
|
|
|
|
|
|
def testNoError(self):
|
|
|
|
result = run_background_tasks.delay()
|
|
|
|
self.assertTrue(result.successful())
|
|
|
|
|
|
|
|
def testProcessedWorkloadStatus(self):
|
|
|
|
before_workloads = Workload.objects.filter(status=WorkloadStatusType.MODIFIED)
|
|
|
|
run_background_tasks.delay()
|
|
|
|
for w in before_workloads:
|
|
|
|
self.assertEqual(w.status, WorkloadStatusType.PROCESSED)
|
|
|
|
|
|
|
|
def testNoModifiedWorkload(self):
|
|
|
|
# First Execution of Modified Workloads
|
|
|
|
run_background_tasks.delay()
|
|
|
|
first_pipeline_run = PipelineRun.objects.get_latest()
|
|
|
|
# Second Execution with no modified workloads
|
|
|
|
run_background_tasks.delay()
|
|
|
|
second_pipeline_run = PipelineRun.objects.get_latest()
|
|
|
|
# Check that the BG task has not run
|
|
|
|
self.assertEqual(first_pipeline_run.start_time, second_pipeline_run.start_time)
|
|
|
|
|
|
|
|
# Test that an empty workload is ignored by the BG task
|
|
|
|
def testEmptyWorkload(self):
|
|
|
|
with transaction.atomic():
|
|
|
|
# Create empty workload
|
|
|
|
empty_workload = Workload.objects.create_workload(dbms=DBMSCatalog.objects.get(pk=1),
|
|
|
|
hardware=Hardware.objects.get(pk=1),
|
2019-12-15 12:13:26 -08:00
|
|
|
name="empty_workload",
|
|
|
|
project=Project.objects.get(pk=1))
|
2019-08-23 08:47:19 -07:00
|
|
|
|
|
|
|
result = run_background_tasks.delay()
|
|
|
|
# Check that BG task successfully finished
|
|
|
|
self.assertTrue(result.successful())
|
|
|
|
# Check that the empty workload is still in MODIFIED Status
|
|
|
|
self.assertEqual(empty_workload.status, 1)
|
|
|
|
pipeline_data = PipelineData.objects.filter(pipeline_run=PipelineRun.objects.get_latest())
|
|
|
|
# Check that the empty workload is not in the pipeline datas
|
|
|
|
self.assertNotIn(empty_workload.pk, pipeline_data.values_list('workload_id', flat=True))
|
|
|
|
|
|
|
|
# Test that a workload that contain only one knob configuration will be ignored by the BG task
|
|
|
|
def testUniqueKnobConfigurationWorkload(self):
|
|
|
|
# Get workload to copy data from
|
|
|
|
origin_workload = Workload.objects.get(pk=1)
|
|
|
|
origin_session = Session.objects.get(pk=1)
|
|
|
|
# Create empty workload
|
|
|
|
fix_workload = Workload.objects.create_workload(dbms=origin_workload.dbms,
|
|
|
|
hardware=origin_workload.hardware,
|
2019-12-15 12:13:26 -08:00
|
|
|
name="fixed_knob_workload",
|
|
|
|
project=origin_workload.project)
|
2019-08-23 08:47:19 -07:00
|
|
|
|
|
|
|
fix_knob_data = Result.objects.filter(workload=origin_workload,
|
|
|
|
session=origin_session)[0].knob_data
|
|
|
|
# Add 5 Result with the same Knob Configuration
|
|
|
|
for res in Result.objects.filter(workload=origin_workload, session=origin_session)[:4]:
|
|
|
|
Result.objects.create_result(res.session, res.dbms, fix_workload,
|
|
|
|
fix_knob_data, res.metric_data,
|
|
|
|
res.observation_start_time,
|
|
|
|
res.observation_end_time,
|
|
|
|
res.observation_time)
|
|
|
|
|
|
|
|
result = run_background_tasks.delay()
|
|
|
|
# Check that BG task successfully finished
|
|
|
|
self.assertTrue(result.successful())
|
|
|
|
# Check that the empty workload is still in MODIFIED Status
|
|
|
|
self.assertEqual(fix_workload.status, 1)
|
|
|
|
pipeline_data = PipelineData.objects.filter(pipeline_run=PipelineRun.objects.get_latest())
|
|
|
|
# Check that the empty workload is not in the pipeline datas
|
|
|
|
self.assertNotIn(fix_workload.pk, pipeline_data.values_list('workload_id', flat=True))
|
|
|
|
|
|
|
|
def testNoWorkloads(self):
|
|
|
|
# delete any existing workloads
|
|
|
|
workloads = Workload.objects.all()
|
|
|
|
workloads.delete()
|
|
|
|
|
|
|
|
# background task should not fail
|
|
|
|
result = run_background_tasks.delay()
|
|
|
|
self.assertTrue(result.successful())
|
|
|
|
|
|
|
|
def testNewPipelineRun(self):
|
|
|
|
# this test currently relies on the fixture data so that
|
|
|
|
# it actually tests anything
|
|
|
|
workloads = Workload.objects.all()
|
|
|
|
if len(workloads) > 0:
|
|
|
|
runs_before = len(PipelineRun.objects.all())
|
|
|
|
run_background_tasks.delay()
|
|
|
|
runs_after = len(PipelineRun.objects.all())
|
|
|
|
self.assertEqual(runs_before + 1, runs_after)
|
|
|
|
|
|
|
|
def checkNewTask(self, task_type):
|
|
|
|
workloads = Workload.objects.all()
|
|
|
|
pruned_before = [len(PipelineData.objects.filter(
|
|
|
|
workload=workload, task_type=task_type)) for workload in workloads]
|
|
|
|
run_background_tasks.delay()
|
|
|
|
pruned_after = [len(PipelineData.objects.filter(
|
|
|
|
workload=workload, task_type=task_type)) for workload in workloads]
|
|
|
|
for before, after in zip(pruned_before, pruned_after):
|
|
|
|
self.assertEqual(before + 1, after)
|
|
|
|
|
|
|
|
def testNewPrunedMetrics(self):
|
|
|
|
self.checkNewTask(PipelineTaskType.PRUNED_METRICS)
|
|
|
|
|
|
|
|
def testNewRankedKnobs(self):
|
|
|
|
self.checkNewTask(PipelineTaskType.RANKED_KNOBS)
|
|
|
|
|
|
|
|
|
|
|
|
class AggregateTestCase(TestCase):
|
|
|
|
|
|
|
|
fixtures = ['test_website.json']
|
|
|
|
|
|
|
|
def testValidWorkload(self):
|
|
|
|
workloads = Workload.objects.all()
|
|
|
|
valid_workload = workloads[0]
|
|
|
|
wkld_results = Result.objects.filter(workload=valid_workload)
|
|
|
|
dicts = aggregate_data(wkld_results)
|
|
|
|
keys = ['data', 'rowlabels', 'columnlabels']
|
|
|
|
for d in dicts:
|
|
|
|
for k in keys:
|
|
|
|
self.assertIn(k, d)
|
|
|
|
|
|
|
|
|
|
|
|
class PrunedMetricTestCase(TestCase):
|
|
|
|
|
|
|
|
fixtures = ['test_website.json']
|
|
|
|
|
|
|
|
def testValidPrunedMetrics(self):
|
|
|
|
workloads = Workload.objects.all()
|
|
|
|
wkld_results = Result.objects.filter(workload=workloads[0])
|
|
|
|
metric_data = aggregate_data(wkld_results)[1]
|
|
|
|
pruned_metrics = run_workload_characterization(metric_data)
|
|
|
|
for m in pruned_metrics:
|
|
|
|
self.assertIn(m, metric_data['columnlabels'])
|
|
|
|
|
|
|
|
|
|
|
|
class RankedKnobTestCase(TestCase):
|
|
|
|
|
|
|
|
fixtures = ['test_website.json']
|
|
|
|
|
|
|
|
def testValidImportantKnobs(self):
|
|
|
|
workloads = Workload.objects.all()
|
|
|
|
wkld_results = Result.objects.filter(workload=workloads[0])
|
|
|
|
knob_data, metric_data = aggregate_data(wkld_results)
|
|
|
|
|
|
|
|
# instead of doing actual metric pruning by factor analysis / clustering,
|
|
|
|
# just randomly select 5 nonconstant metrics
|
|
|
|
nonconst_metric_columnlabels = []
|
|
|
|
for col, cl in zip(metric_data['data'].T, metric_data['columnlabels']):
|
|
|
|
if np.any(col != col[0]):
|
|
|
|
nonconst_metric_columnlabels.append(cl)
|
|
|
|
|
|
|
|
num_metrics = min(5, len(nonconst_metric_columnlabels))
|
|
|
|
selected_columnlabels = np.random.choice(nonconst_metric_columnlabels,
|
|
|
|
num_metrics, replace=False)
|
|
|
|
pruned_metric_idxs = [i for i, metric_name in
|
|
|
|
enumerate(metric_data['columnlabels'])
|
|
|
|
if metric_name in selected_columnlabels]
|
|
|
|
pruned_metric_data = {
|
|
|
|
'data': metric_data['data'][:, pruned_metric_idxs],
|
|
|
|
'rowlabels': copy.deepcopy(metric_data['rowlabels']),
|
|
|
|
'columnlabels': [metric_data['columnlabels'][i] for i in pruned_metric_idxs]
|
|
|
|
}
|
|
|
|
|
|
|
|
# run knob_identification using knob_data and fake pruned metrics
|
|
|
|
ranked_knobs = run_knob_identification(knob_data, pruned_metric_data,
|
|
|
|
workloads[0].dbms)
|
|
|
|
for k in ranked_knobs:
|
|
|
|
self.assertIn(k, knob_data['columnlabels'])
|