ottertune/server/analysis/simulation.py

256 lines
8.7 KiB
Python
Raw Normal View History

#
# OtterTune - simulation.py
#
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
#
2019-10-22 15:22:18 -07:00
2019-10-24 13:42:39 -07:00
import heapq
import random
import os
import sys
try:
import matplotlib.pyplot as plt
except (ModuleNotFoundError, ImportError):
plt = None
import numpy as np
import torch
sys.path.append("../")
from analysis.util import get_analysis_logger # noqa
from analysis.ddpg.ddpg import DDPG # noqa
2019-10-24 13:42:39 -07:00
from analysis.gp_tf import GPRGD # noqa
from analysis.nn_tf import NeuralNet # noqa
LOG = get_analysis_logger(__name__)
class Environment(object):
def __init__(self, n_knob, n_metric, mode=0):
self.knob_dim = n_knob
self.metric_dim = n_metric
self.mode = mode
def identity_sqrt(self, knob_data):
n1 = self.knob_dim // 4
n2 = self.knob_dim // 4
part1 = np.sum(knob_data[0: n1])
part2 = np.sum(np.sqrt(knob_data[n1: n1 + n2]))
reward = np.array([part1 + part2]) / (self.knob_dim // 2)
metric_data = np.zeros(self.metric_dim)
return reward, metric_data
def borehole(self, knob_data):
# ref: http://www.sfu.ca/~ssurjano/borehole.html
# pylint: disable=invalid-name
rw = knob_data[0] * (0.15 - 0.05) + 0.05
r = knob_data[1] * (50000 - 100) + 100
Tu = knob_data[2] * (115600 - 63070) + 63070
Hu = knob_data[3] * (1110 - 990) + 990
Tl = knob_data[4] * (116 - 63.1) + 63.1
Hl = knob_data[5] * (820 - 700) + 700
L = knob_data[6] * (1680 - 1120) + 1120
Kw = knob_data[7] * (12045 - 9855) + 9855
frac = 2 * L * Tu / (np.log(r / rw) * rw ** 2 * Kw)
reward = 2 * np.pi * Tu * (Hu - Hl) / (np.log(r / rw) * (1 + frac + Tu / Tl))
return np.array([reward]), np.zeros(self.metric_dim)
def threshold(self, knob_data):
n1 = self.knob_dim // 4
n2 = self.knob_dim // 4
part1 = np.sum(knob_data[0: n1] > 0.9)
part2 = np.sum(knob_data[n1: n1 + n2] < 0.1)
reward = np.array([part1 + part2])
metric_data = np.zeros(self.metric_dim)
return reward, metric_data
def simulate(self, knob_data):
if self.mode == 0:
return self.identity_sqrt(knob_data)
elif self.mode == 1:
return self.threshold(knob_data)
elif self.mode == 2:
return self.borehole(knob_data)
2019-10-24 13:42:39 -07:00
def ddpg(env, config, n_loops=1000):
results = []
x_axis = []
2019-10-24 13:42:39 -07:00
gamma = config['gamma']
tau = config['tau']
lr = config['lr']
batch_size = config['batch_size']
n_epochs = config['n_epochs']
model_ddpg = DDPG(n_actions=env.knob_dim, n_states=env.metric_dim, gamma=gamma, tau=tau,
clr=lr, alr=lr, batch_size=batch_size)
knob_data = np.random.rand(env.knob_dim)
prev_metric_data = np.zeros(env.metric_dim)
for i in range(n_loops):
reward, metric_data = env.simulate(knob_data)
2019-10-24 13:42:39 -07:00
model_ddpg.add_sample(prev_metric_data, knob_data, reward, metric_data)
for _ in range(n_epochs):
model_ddpg.update()
results.append(reward)
x_axis.append(i)
prev_metric_data = metric_data
2019-10-24 13:42:39 -07:00
knob_data = model_ddpg.choose_action(prev_metric_data)
return np.array(results), np.array(x_axis)
2019-10-24 13:42:39 -07:00
class ReplayMemory(object):
def __init__(self):
self.actions = []
self.rewards = []
def push(self, action, reward):
self.actions.append(action.tolist())
self.rewards.append(reward.tolist())
2019-10-24 13:42:39 -07:00
def get_all(self):
return self.actions, self.rewards
2019-10-24 13:42:39 -07:00
def dnn(env, config, n_loops=100):
results = []
x_axis = []
memory = ReplayMemory()
num_samples = config['num_samples']
Xmin = np.zeros(env.knob_dim)
Xmax = np.ones(env.knob_dim)
for i in range(n_loops):
X_samples = np.random.rand(num_samples, env.knob_dim)
if i >= 10:
actions, rewards = memory.get_all()
tuples = tuple(zip(actions, rewards))
top10 = heapq.nlargest(10, tuples, key=lambda e: e[1])
for entry in top10:
X_samples = np.vstack((X_samples, np.array(entry[0])))
model_nn = NeuralNet(n_input=X_samples.shape[1],
batch_size=X_samples.shape[0],
explore_iters=500,
noise_scale_begin=0.1,
noise_scale_end=0.0,
debug=False,
debug_interval=100)
if i >= 5:
actions, rewards = memory.get_all()
model_nn.fit(np.array(actions), -np.array(rewards), fit_epochs=500)
res = model_nn.recommend(X_samples, Xmin, Xmax,
explore=500, recommend_epochs=500)
best_config_idx = np.argmin(res.minl.ravel())
best_config = res.minl_conf[best_config_idx, :]
reward, _ = env.simulate(best_config)
memory.push(best_config, reward)
LOG.info('loop: %d reward: %f', i, reward[0])
results.append(reward)
x_axis.append(i)
return np.array(results), np.array(x_axis)
def gprgd(env, config, n_loops=100):
results = []
x_axis = []
memory = ReplayMemory()
num_samples = config['num_samples']
X_min = np.zeros(env.knob_dim)
X_max = np.ones(env.knob_dim)
for _ in range(5):
action = np.random.rand(env.knob_dim)
reward, _ = env.simulate(action)
memory.push(action, reward)
for i in range(n_loops):
X_samples = np.random.rand(num_samples, env.knob_dim)
if i >= 5:
actions, rewards = memory.get_all()
tuples = tuple(zip(actions, rewards))
top10 = heapq.nlargest(10, tuples, key=lambda e: e[1])
for entry in top10:
# Tensorflow get broken if we use the training data points as
# starting points for GPRGD.
X_samples = np.vstack((X_samples, np.array(entry[0]) * 0.97 + 0.01))
model = GPRGD(length_scale=1.0,
magnitude=1.0,
max_train_size=7000,
batch_size=3000,
num_threads=4,
learning_rate=0.01,
epsilon=1e-6,
max_iter=500,
sigma_multiplier=3.0,
mu_multiplier=1.0)
actions, rewards = memory.get_all()
model.fit(np.array(actions), -np.array(rewards), X_min, X_max, ridge=0.01)
res = model.predict(X_samples)
best_config_idx = np.argmin(res.minl.ravel())
best_config = res.minl_conf[best_config_idx, :]
reward, _ = env.simulate(best_config)
memory.push(best_config, reward)
LOG.info('loop: %d reward: %f', i, reward[0])
results.append(reward)
x_axis.append(i)
return np.array(results), np.array(x_axis)
def plotlines(x_axis, results, labels, title, path):
if plt:
2019-10-24 13:42:39 -07:00
for result, label in zip(results, labels):
plt.plot(x_axis, result, label=label)
plt.legend()
plt.xlabel("loops")
plt.ylabel("rewards")
plt.title(title)
plt.savefig(path)
plt.clf()
2019-10-24 13:42:39 -07:00
def run(tuners, configs, labels, knob_dim, metric_dim, mode, n_loops, n_repeats):
if not plt:
LOG.info("Cannot import matplotlib. Will write results to files instead of figures.")
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
env = Environment(knob_dim, metric_dim, mode=mode)
2019-10-24 13:42:39 -07:00
results = []
for i in range(n_repeats):
2019-10-24 13:42:39 -07:00
for j, _ in enumerate(tuners):
result, x_axis = tuners[j](env, configs[j], n_loops=n_loops)
if i is 0:
results.append(result / n_repeats)
else:
results[j] += result / n_repeats
title = "mode_{}_knob_{}".format(mode, knob_dim)
if plt:
if not os.path.exists("figures"):
os.mkdir("figures")
filename = "figures/{}.pdf".format(title)
2019-10-24 13:42:39 -07:00
plotlines(x_axis, results, labels, title, filename)
for j in range(len(tuners)):
with open(title + '_' + labels[j] + '.csv', 'w') as f:
for i, result in zip(x_axis, results[j]):
f.write(str(i) + ',' + str(result[0]) + '\n')
def main():
knob_dim = 192
metric_dim = 60
mode = 0
n_loops = 2
n_repeats = 1
configs = [{'gamma': 0., 'tau': 0.002, 'lr': 0.001, 'batch_size': 32, 'n_epochs': 30},
{'gamma': 0.99, 'tau': 0.002, 'lr': 0.001, 'batch_size': 32, 'n_epochs': 30},
{'num_samples': 30},
{'num_samples': 30}]
tuners = [ddpg, ddpg, dnn, gprgd]
labels = [tuner.__name__ for tuner in tuners]
labels[0] += '_gamma_0'
labels[1] += '_gamma_99'
run(tuners, configs, labels, knob_dim, metric_dim, mode, n_loops, n_repeats)
if __name__ == '__main__':
main()