2019-09-22 18:03:29 -07:00
|
|
|
#
|
|
|
|
# OtterTune - nn_tf.py
|
|
|
|
#
|
|
|
|
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
|
|
|
#
|
|
|
|
'''
|
|
|
|
Created on Sep 16, 2019
|
|
|
|
@author: Bohan Zhang
|
|
|
|
'''
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow import keras
|
|
|
|
from tensorflow.keras import layers
|
|
|
|
|
|
|
|
from .util import get_analysis_logger
|
|
|
|
|
|
|
|
LOG = get_analysis_logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class NeuralNetResult(object):
|
|
|
|
def __init__(self, minl=None, minl_conf=None):
|
|
|
|
self.minl = minl
|
|
|
|
self.minl_conf = minl_conf
|
|
|
|
|
|
|
|
|
|
|
|
class NeuralNet(object):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
n_input,
|
|
|
|
weights_file,
|
|
|
|
learning_rate=0.01,
|
|
|
|
debug=False,
|
|
|
|
debug_interval=100,
|
2019-09-22 20:38:06 -07:00
|
|
|
batch_size=1,
|
2019-09-22 18:03:29 -07:00
|
|
|
explore_iters=500,
|
2019-09-22 20:38:06 -07:00
|
|
|
noise_scale_begin=0.1,
|
|
|
|
noise_scale_end=0):
|
2019-09-22 18:03:29 -07:00
|
|
|
# absolute path for the model weitghs file
|
|
|
|
# one model for each (project, session)
|
|
|
|
self.weights_file = weights_file
|
|
|
|
|
2019-09-22 20:38:06 -07:00
|
|
|
self.history = None
|
2019-09-22 18:03:29 -07:00
|
|
|
self.recommend_iters = 0
|
|
|
|
self.n_input = n_input
|
|
|
|
self.debug = debug
|
|
|
|
self.debug_interval = debug_interval
|
|
|
|
self.learning_rate = 0.01
|
|
|
|
self.batch_size = batch_size
|
|
|
|
self.explore_iters = explore_iters
|
|
|
|
self.noise_scale_begin = noise_scale_begin
|
|
|
|
self.noise_scale_end = noise_scale_end
|
|
|
|
self.optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
|
|
|
|
# input X is placeholder, weights are variables.
|
|
|
|
self.model = keras.Sequential([
|
|
|
|
layers.Dense(64, activation=tf.nn.relu, input_shape=[n_input]),
|
|
|
|
layers.Dropout(0.5),
|
|
|
|
layers.Dense(64, activation=tf.nn.relu),
|
|
|
|
layers.Dense(1)
|
|
|
|
])
|
|
|
|
self.load_weights()
|
|
|
|
self.model.compile(loss='mean_squared_error',
|
|
|
|
optimizer=self.optimizer,
|
|
|
|
metrics=['mean_squared_error', 'mean_absolute_error'])
|
|
|
|
self.vars = {}
|
|
|
|
self.ops = {}
|
|
|
|
self.build_graph()
|
|
|
|
|
|
|
|
def save_weights(self):
|
|
|
|
self.model.save_weights(self.weights_file)
|
|
|
|
|
|
|
|
def load_weights(self):
|
|
|
|
try:
|
|
|
|
self.model.load_weights(self.weights_file)
|
|
|
|
if self.debug:
|
|
|
|
LOG.info('Neural Network Model weights file exists, load weights from the file')
|
2019-09-22 20:38:06 -07:00
|
|
|
except Exception: # pylint: disable=broad-except
|
2019-09-22 18:03:29 -07:00
|
|
|
LOG.info('Weights file does not match neural network model, train model from scratch')
|
|
|
|
|
|
|
|
# Build same neural network as self.model, But input X is variables,
|
|
|
|
# weights are placedholders. Find optimial X using gradient descent.
|
|
|
|
def build_graph(self):
|
|
|
|
batch_size = self.batch_size
|
|
|
|
self.graph = tf.Graph()
|
|
|
|
with self.graph.as_default():
|
|
|
|
x_ = tf.Variable(tf.ones([batch_size, self.n_input]))
|
|
|
|
w1_ = tf.placeholder(tf.float32, [self.n_input, 64])
|
|
|
|
b1_ = tf.placeholder(tf.float32, [64])
|
|
|
|
w2_ = tf.placeholder(tf.float32, [64, 64])
|
|
|
|
b2_ = tf.placeholder(tf.float32, [64])
|
|
|
|
w3_ = tf.placeholder(tf.float32, [64, 1])
|
|
|
|
b3_ = tf.placeholder(tf.float32, [1])
|
|
|
|
l1_ = tf.nn.relu(tf.add(tf.matmul(x_, w1_), b1_))
|
|
|
|
l2_ = tf.nn.relu(tf.add(tf.matmul(l1_, w2_), b2_))
|
|
|
|
y_ = tf.add(tf.matmul(l2_, w3_), b3_)
|
|
|
|
optimizer_ = tf.train.AdamOptimizer(learning_rate=0.01)
|
|
|
|
train_ = optimizer_.minimize(y_)
|
|
|
|
|
|
|
|
self.vars['x_'] = x_
|
|
|
|
self.vars['y_'] = y_
|
|
|
|
self.vars['w1_'] = w1_
|
|
|
|
self.vars['w2_'] = w2_
|
|
|
|
self.vars['w3_'] = w3_
|
|
|
|
self.vars['b1_'] = b1_
|
|
|
|
self.vars['b2_'] = b2_
|
|
|
|
self.vars['b3_'] = b3_
|
|
|
|
self.ops['train_'] = train_
|
|
|
|
|
|
|
|
def fit(self, X_train, y_train, fit_epochs=500):
|
|
|
|
self.history = self.model.fit(
|
|
|
|
X_train, y_train, epochs=fit_epochs, verbose=0)
|
|
|
|
# save model weights
|
|
|
|
self.save_weights()
|
|
|
|
if self.debug:
|
2019-09-22 20:38:06 -07:00
|
|
|
mse = self.history.history['mean_squared_error']
|
2019-09-22 18:03:29 -07:00
|
|
|
i = 0
|
2019-09-22 20:38:06 -07:00
|
|
|
size = len(mse)
|
2019-09-22 18:03:29 -07:00
|
|
|
while(i < size):
|
|
|
|
LOG.info("Neural network training phase, epoch %d: mean_squared_error %f",
|
2019-09-22 20:38:06 -07:00
|
|
|
i, mse[i])
|
2019-09-22 18:03:29 -07:00
|
|
|
i += self.debug_interval
|
|
|
|
LOG.info("Neural network training phase, epoch %d: mean_squared_error %f",
|
2019-09-22 20:38:06 -07:00
|
|
|
size - 1, mse[size - 1])
|
2019-09-22 18:03:29 -07:00
|
|
|
|
|
|
|
def predict(self, X_pred):
|
|
|
|
return self.model.predict(X_pred)
|
|
|
|
|
2019-09-22 20:38:06 -07:00
|
|
|
# Reference: Parameter Space Noise for Exploration.ICLR 2018, https://arxiv.org/abs/1706.01905
|
|
|
|
def add_noise(self, weights):
|
|
|
|
scale = self.adaptive_noise_scale()
|
2019-09-22 18:03:29 -07:00
|
|
|
size = weights.shape[-1]
|
|
|
|
noise = scale * np.random.normal(size=size)
|
|
|
|
return weights + noise
|
|
|
|
|
|
|
|
def adaptive_noise_scale(self):
|
|
|
|
if self.recommend_iters > self.explore_iters:
|
|
|
|
scale = self.noise_scale_end
|
|
|
|
else:
|
|
|
|
scale = self.noise_scale_begin - (self.noise_scale_begin - self.noise_scale_end) \
|
|
|
|
* 1.0 * self.recommend_iters / self.explore_iters
|
|
|
|
return scale
|
|
|
|
|
|
|
|
def recommend(self, X_start, X_min=None, X_max=None, recommend_epochs=500, explore=False):
|
|
|
|
batch_size = len(X_start)
|
|
|
|
assert(batch_size == self.batch_size)
|
|
|
|
w1, b1 = self.model.get_layer(index=0).get_weights()
|
|
|
|
w2, b2 = self.model.get_layer(index=2).get_weights()
|
|
|
|
w3, b3 = self.model.get_layer(index=3).get_weights()
|
|
|
|
|
2019-09-22 20:38:06 -07:00
|
|
|
if explore is True:
|
|
|
|
w1 = self.add_noise(w1)
|
|
|
|
b1 = self.add_noise(b1)
|
|
|
|
w2 = self.add_noise(w2)
|
|
|
|
b2 = self.add_noise(b2)
|
|
|
|
w3 = self.add_noise(w3)
|
|
|
|
b3 = self.add_noise(b3)
|
|
|
|
|
2019-09-22 18:03:29 -07:00
|
|
|
if self.debug:
|
|
|
|
y_predict = self.predict(X_start)
|
|
|
|
LOG.info("Recommend phase, y prediction: min %f, max %f, mean %f",
|
|
|
|
np.min(y_predict), np.max(y_predict), np.mean(y_predict))
|
|
|
|
|
|
|
|
with tf.Session(graph=self.graph) as sess:
|
|
|
|
init = tf.global_variables_initializer()
|
|
|
|
sess.run(init)
|
|
|
|
assign_x_op = self.vars['x_'].assign(X_start)
|
|
|
|
sess.run(assign_x_op)
|
|
|
|
y_before = sess.run(self.vars['y_'],
|
|
|
|
feed_dict={self.vars['w1_']: w1, self.vars['w2_']: w2,
|
|
|
|
self.vars['w3_']: w3, self.vars['b1_']: b1,
|
|
|
|
self.vars['b2_']: b2, self.vars['b3_']: b3})
|
|
|
|
if self.debug:
|
|
|
|
LOG.info("Recommend phase, y before gradient descent: min %f, max %f, mean %f",
|
|
|
|
np.min(y_before), np.max(y_before), np.mean(y_before))
|
|
|
|
|
|
|
|
for i in range(recommend_epochs):
|
|
|
|
sess.run(self.ops['train_'],
|
|
|
|
feed_dict={self.vars['w1_']: w1, self.vars['w2_']: w2,
|
|
|
|
self.vars['w3_']: w3, self.vars['b1_']: b1,
|
|
|
|
self.vars['b2_']: b2, self.vars['b3_']: b3})
|
|
|
|
|
|
|
|
# constrain by X_min and X_max
|
|
|
|
if X_min is not None and X_max is not None:
|
|
|
|
X_train = sess.run(self.vars['x_'])
|
|
|
|
X_train = np.minimum(X_train, X_max)
|
|
|
|
X_train = np.maximum(X_train, X_min)
|
|
|
|
constraint_x_op = self.vars['x_'].assign(X_train)
|
|
|
|
sess.run(constraint_x_op)
|
|
|
|
|
|
|
|
if self.debug and i % self.debug_interval == 0:
|
|
|
|
y_train = sess.run(self.vars['y_'],
|
|
|
|
feed_dict={self.vars['w1_']: w1, self.vars['w2_']: w2,
|
|
|
|
self.vars['w3_']: w3, self.vars['b1_']: b1,
|
|
|
|
self.vars['b2_']: b2, self.vars['b3_']: b3})
|
|
|
|
LOG.info("Recommend phase, epoch %d, y: min %f, max %f, mean %f",
|
|
|
|
i, np.min(y_train), np.max(y_train), np.mean(y_train))
|
|
|
|
|
|
|
|
y_recommend = sess.run(self.vars['y_'],
|
|
|
|
feed_dict={self.vars['w1_']: w1, self.vars['w2_']: w2,
|
|
|
|
self.vars['w3_']: w3, self.vars['b1_']: b1,
|
|
|
|
self.vars['b2_']: b2, self.vars['b3_']: b3})
|
|
|
|
X_recommend = sess.run(self.vars['x_'])
|
|
|
|
res = NeuralNetResult(minl=y_recommend, minl_conf=X_recommend)
|
|
|
|
|
|
|
|
if self.debug:
|
|
|
|
LOG.info("Recommend phase, epoch %d, y after gradient descent: \
|
|
|
|
min %f, max %f, mean %f", recommend_epochs, np.mean(y_recommend),
|
|
|
|
np.max(y_recommend), np.mean(y_recommend))
|
|
|
|
|
|
|
|
self.recommend_iters += 1
|
|
|
|
return res
|