more info in result
This commit is contained in:
parent
3ff9698295
commit
131645f059
|
@ -272,11 +272,17 @@ def preprocessing(result_id, algorithm):
|
||||||
if not has_pipeline_data and session.tuning_session == 'tuning_session':
|
if not has_pipeline_data and session.tuning_session == 'tuning_session':
|
||||||
LOG.info("%s: Background tasks haven't ran for this workload yet, "
|
LOG.info("%s: Background tasks haven't ran for this workload yet, "
|
||||||
"picking data with lhs.", task_name)
|
"picking data with lhs.", task_name)
|
||||||
|
target_data['debug'] = ("Background tasks haven't ran for this workload yet. "
|
||||||
|
"If this keeps happening, please make sure Celery periodic "
|
||||||
|
"tasks are running on the server.")
|
||||||
if results_cnt == 0 and session.tuning_session == 'tuning_session':
|
if results_cnt == 0 and session.tuning_session == 'tuning_session':
|
||||||
LOG.info("%s: Not enough data in this session, picking data with lhs.", task_name)
|
LOG.info("%s: Not enough data in this session, picking data with lhs.", task_name)
|
||||||
|
target_data['debug'] = "Not enough data in this session, picking data with lhs."
|
||||||
if skip_ddpg:
|
if skip_ddpg:
|
||||||
LOG.info("%s: The most recent result cannot be used by DDPG, picking data with lhs.",
|
LOG.info("%s: The most recent result cannot be used by DDPG, picking data with lhs.",
|
||||||
task_name)
|
task_name)
|
||||||
|
target_data['debug'] = ("The most recent result cannot be used by DDPG,"
|
||||||
|
"picking data with lhs.")
|
||||||
|
|
||||||
all_samples = JSONUtil.loads(session.lhs_samples)
|
all_samples = JSONUtil.loads(session.lhs_samples)
|
||||||
if len(all_samples) == 0:
|
if len(all_samples) == 0:
|
||||||
|
@ -575,13 +581,14 @@ def check_early_return(target_data, algorithm):
|
||||||
newest_result = Result.objects.get(pk=result_id)
|
newest_result = Result.objects.get(pk=result_id)
|
||||||
if target_data.get('status', 'good') != 'good': # No status or status is not 'good'
|
if target_data.get('status', 'good') != 'good': # No status or status is not 'good'
|
||||||
if target_data['status'] == 'random':
|
if target_data['status'] == 'random':
|
||||||
info = 'The config is generated by Random'
|
info = 'The config is generated by Random.'
|
||||||
elif target_data['status'] == 'lhs':
|
elif target_data['status'] == 'lhs':
|
||||||
info = 'The config is generated by LHS'
|
info = 'The config is generated by LHS.'
|
||||||
elif target_data['status'] == 'range_test':
|
elif target_data['status'] == 'range_test':
|
||||||
info = 'Searching for valid knob ranges'
|
info = 'Searching for valid knob ranges.'
|
||||||
else:
|
else:
|
||||||
info = 'Unknown'
|
info = 'Unknown.'
|
||||||
|
info += ' ' + target_data.get('debug', '')
|
||||||
target_data_res = create_and_save_recommendation(
|
target_data_res = create_and_save_recommendation(
|
||||||
recommended_knobs=target_data['config_recommend'], result=newest_result,
|
recommended_knobs=target_data['config_recommend'], result=newest_result,
|
||||||
status=target_data['status'], info=info, pipeline_run=None)
|
status=target_data['status'], info=info, pipeline_run=None)
|
||||||
|
@ -877,8 +884,9 @@ def configuration_recommendation(recommendation_input):
|
||||||
break
|
break
|
||||||
|
|
||||||
res = None
|
res = None
|
||||||
|
info_msg = 'INFO: training data size is {}. '.format(X_scaled.shape[0])
|
||||||
if algorithm == AlgorithmType.DNN:
|
if algorithm == AlgorithmType.DNN:
|
||||||
|
info_msg += 'Recommended by DNN.'
|
||||||
# neural network model
|
# neural network model
|
||||||
model_nn = NeuralNet(n_input=X_samples.shape[1],
|
model_nn = NeuralNet(n_input=X_samples.shape[1],
|
||||||
batch_size=X_samples.shape[0],
|
batch_size=X_samples.shape[0],
|
||||||
|
@ -897,6 +905,7 @@ def configuration_recommendation(recommendation_input):
|
||||||
session.save()
|
session.save()
|
||||||
|
|
||||||
elif algorithm == AlgorithmType.GPR:
|
elif algorithm == AlgorithmType.GPR:
|
||||||
|
info_msg += 'Recommended by GPR.'
|
||||||
# default gpr model
|
# default gpr model
|
||||||
if params['GPR_USE_GPFLOW']:
|
if params['GPR_USE_GPFLOW']:
|
||||||
LOG.debug("%s: Running GPR with GPFLOW.", task_name)
|
LOG.debug("%s: Running GPR with GPFLOW.", task_name)
|
||||||
|
@ -957,8 +966,7 @@ def configuration_recommendation(recommendation_input):
|
||||||
|
|
||||||
conf_map_res = create_and_save_recommendation(
|
conf_map_res = create_and_save_recommendation(
|
||||||
recommended_knobs=conf_map, result=newest_result,
|
recommended_knobs=conf_map, result=newest_result,
|
||||||
status='good', info='INFO: training data size is {}'.format(X_scaled.shape[0]),
|
status='good', info=info_msg, pipeline_run=target_data['pipeline_run'])
|
||||||
pipeline_run=target_data['pipeline_run'])
|
|
||||||
|
|
||||||
exec_time = save_execution_time(start_ts, "configuration_recommendation", newest_result)
|
exec_time = save_execution_time(start_ts, "configuration_recommendation", newest_result)
|
||||||
LOG.debug("\n%s: Result = %s\n", task_name, _task_result_tostring(conf_map_res))
|
LOG.debug("\n%s: Result = %s\n", task_name, _task_result_tostring(conf_map_res))
|
||||||
|
|
Loading…
Reference in New Issue