more info in result
This commit is contained in:
parent
3ff9698295
commit
131645f059
|
@ -272,11 +272,17 @@ def preprocessing(result_id, algorithm):
|
|||
if not has_pipeline_data and session.tuning_session == 'tuning_session':
|
||||
LOG.info("%s: Background tasks haven't ran for this workload yet, "
|
||||
"picking data with lhs.", task_name)
|
||||
target_data['debug'] = ("Background tasks haven't ran for this workload yet. "
|
||||
"If this keeps happening, please make sure Celery periodic "
|
||||
"tasks are running on the server.")
|
||||
if results_cnt == 0 and session.tuning_session == 'tuning_session':
|
||||
LOG.info("%s: Not enough data in this session, picking data with lhs.", task_name)
|
||||
target_data['debug'] = "Not enough data in this session, picking data with lhs."
|
||||
if skip_ddpg:
|
||||
LOG.info("%s: The most recent result cannot be used by DDPG, picking data with lhs.",
|
||||
task_name)
|
||||
target_data['debug'] = ("The most recent result cannot be used by DDPG,"
|
||||
"picking data with lhs.")
|
||||
|
||||
all_samples = JSONUtil.loads(session.lhs_samples)
|
||||
if len(all_samples) == 0:
|
||||
|
@ -575,13 +581,14 @@ def check_early_return(target_data, algorithm):
|
|||
newest_result = Result.objects.get(pk=result_id)
|
||||
if target_data.get('status', 'good') != 'good': # No status or status is not 'good'
|
||||
if target_data['status'] == 'random':
|
||||
info = 'The config is generated by Random'
|
||||
info = 'The config is generated by Random.'
|
||||
elif target_data['status'] == 'lhs':
|
||||
info = 'The config is generated by LHS'
|
||||
info = 'The config is generated by LHS.'
|
||||
elif target_data['status'] == 'range_test':
|
||||
info = 'Searching for valid knob ranges'
|
||||
info = 'Searching for valid knob ranges.'
|
||||
else:
|
||||
info = 'Unknown'
|
||||
info = 'Unknown.'
|
||||
info += ' ' + target_data.get('debug', '')
|
||||
target_data_res = create_and_save_recommendation(
|
||||
recommended_knobs=target_data['config_recommend'], result=newest_result,
|
||||
status=target_data['status'], info=info, pipeline_run=None)
|
||||
|
@ -877,8 +884,9 @@ def configuration_recommendation(recommendation_input):
|
|||
break
|
||||
|
||||
res = None
|
||||
|
||||
info_msg = 'INFO: training data size is {}. '.format(X_scaled.shape[0])
|
||||
if algorithm == AlgorithmType.DNN:
|
||||
info_msg += 'Recommended by DNN.'
|
||||
# neural network model
|
||||
model_nn = NeuralNet(n_input=X_samples.shape[1],
|
||||
batch_size=X_samples.shape[0],
|
||||
|
@ -897,6 +905,7 @@ def configuration_recommendation(recommendation_input):
|
|||
session.save()
|
||||
|
||||
elif algorithm == AlgorithmType.GPR:
|
||||
info_msg += 'Recommended by GPR.'
|
||||
# default gpr model
|
||||
if params['GPR_USE_GPFLOW']:
|
||||
LOG.debug("%s: Running GPR with GPFLOW.", task_name)
|
||||
|
@ -957,8 +966,7 @@ def configuration_recommendation(recommendation_input):
|
|||
|
||||
conf_map_res = create_and_save_recommendation(
|
||||
recommended_knobs=conf_map, result=newest_result,
|
||||
status='good', info='INFO: training data size is {}'.format(X_scaled.shape[0]),
|
||||
pipeline_run=target_data['pipeline_run'])
|
||||
status='good', info=info_msg, pipeline_run=target_data['pipeline_run'])
|
||||
|
||||
exec_time = save_execution_time(start_ts, "configuration_recommendation", newest_result)
|
||||
LOG.debug("\n%s: Result = %s\n", task_name, _task_result_tostring(conf_map_res))
|
||||
|
|
Loading…
Reference in New Issue