make session hyperparameters editable on the website
This commit is contained in:
parent
6bf50b892d
commit
24194293bc
|
@ -134,11 +134,12 @@ class SessionForm(forms.ModelForm):
|
||||||
model = Session
|
model = Session
|
||||||
|
|
||||||
fields = ('name', 'description', 'tuning_session', 'dbms', 'cpu', 'memory', 'storage',
|
fields = ('name', 'description', 'tuning_session', 'dbms', 'cpu', 'memory', 'storage',
|
||||||
'algorithm', 'target_objective')
|
'algorithm', 'target_objective', 'hyper_parameters')
|
||||||
|
|
||||||
widgets = {
|
widgets = {
|
||||||
'name': forms.TextInput(attrs={'required': True}),
|
'name': forms.TextInput(attrs={'required': True}),
|
||||||
'description': forms.Textarea(attrs={'maxlength': 500, 'rows': 5}),
|
'description': forms.Textarea(attrs={'maxlength': 500, 'rows': 5}),
|
||||||
|
'hyper_parameters': forms.Textarea(attrs={'maxlength': 2000, 'rows': 10}),
|
||||||
}
|
}
|
||||||
labels = {
|
labels = {
|
||||||
'dbms': 'DBMS',
|
'dbms': 'DBMS',
|
||||||
|
|
|
@ -0,0 +1,20 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# Generated by Django 1.11.23 on 2020-01-12 07:29
|
||||||
|
from __future__ import unicode_literals
|
||||||
|
|
||||||
|
from django.db import migrations, models
|
||||||
|
|
||||||
|
|
||||||
|
class Migration(migrations.Migration):
|
||||||
|
|
||||||
|
dependencies = [
|
||||||
|
('website', '0005_add_workload_field'),
|
||||||
|
]
|
||||||
|
|
||||||
|
operations = [
|
||||||
|
migrations.AddField(
|
||||||
|
model_name='session',
|
||||||
|
name='hyper_parameters',
|
||||||
|
field=models.TextField(default='{}'),
|
||||||
|
),
|
||||||
|
]
|
|
@ -162,6 +162,7 @@ class Session(BaseModel):
|
||||||
|
|
||||||
target_objective = models.CharField(
|
target_objective = models.CharField(
|
||||||
max_length=64, default=target_objectives.default())
|
max_length=64, default=target_objectives.default())
|
||||||
|
hyper_parameters = models.TextField(default="{}")
|
||||||
|
|
||||||
def clean(self):
|
def clean(self):
|
||||||
if self.target_objective is None:
|
if self.target_objective is None:
|
||||||
|
|
|
@ -4,10 +4,22 @@
|
||||||
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
||||||
#
|
#
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
# These parameters are not specified for any session, so they can only be set here
|
||||||
|
|
||||||
|
# address categorical knobs (enum, boolean)
|
||||||
|
enable_dummy_encoder = False
|
||||||
|
|
||||||
# ---PIPELINE CONSTANTS---
|
# ---PIPELINE CONSTANTS---
|
||||||
# how often to run the background tests, in seconds
|
# how often to run the background tests, in seconds
|
||||||
RUN_EVERY = 300
|
run_every = 300
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------
|
||||||
|
# The following parameters can be viewed and modified on the session page on the website
|
||||||
|
|
||||||
|
# ---SAMPLING CONSTANTS---
|
||||||
# the number of samples (staring points) in gradient descent
|
# the number of samples (staring points) in gradient descent
|
||||||
NUM_SAMPLES = 30
|
NUM_SAMPLES = 30
|
||||||
|
|
||||||
|
@ -20,10 +32,6 @@ IMPORTANT_KNOB_NUMBER = 10000
|
||||||
TOP_NUM_CONFIG = 10
|
TOP_NUM_CONFIG = 10
|
||||||
|
|
||||||
# ---CONSTRAINTS CONSTANTS---
|
# ---CONSTRAINTS CONSTANTS---
|
||||||
|
|
||||||
# address categorical knobs (enum, boolean)
|
|
||||||
ENABLE_DUMMY_ENCODER = False
|
|
||||||
|
|
||||||
# Initial probability to flip categorical feature in apply_constraints
|
# Initial probability to flip categorical feature in apply_constraints
|
||||||
# server/analysis/constraints.py
|
# server/analysis/constraints.py
|
||||||
INIT_FLIP_PROB = 0.3
|
INIT_FLIP_PROB = 0.3
|
||||||
|
|
|
@ -30,23 +30,7 @@ from website.models import (PipelineData, PipelineRun, Result, Workload, KnobCat
|
||||||
from website import db
|
from website import db
|
||||||
from website.types import PipelineTaskType, AlgorithmType, VarType
|
from website.types import PipelineTaskType, AlgorithmType, VarType
|
||||||
from website.utils import DataUtil, JSONUtil
|
from website.utils import DataUtil, JSONUtil
|
||||||
from website.settings import IMPORTANT_KNOB_NUMBER, NUM_SAMPLES, TOP_NUM_CONFIG # pylint: disable=no-name-in-module
|
from website.settings import enable_dummy_encoder
|
||||||
from website.settings import (USE_GPFLOW, DEFAULT_LENGTH_SCALE, DEFAULT_MAGNITUDE,
|
|
||||||
MAX_TRAIN_SIZE, BATCH_SIZE, NUM_THREADS,
|
|
||||||
DEFAULT_RIDGE, DEFAULT_LEARNING_RATE,
|
|
||||||
DEFAULT_EPSILON, MAX_ITER, GPR_EPS,
|
|
||||||
DEFAULT_SIGMA_MULTIPLIER, DEFAULT_MU_MULTIPLIER,
|
|
||||||
DEFAULT_UCB_SCALE, HP_LEARNING_RATE, HP_MAX_ITER,
|
|
||||||
DDPG_SIMPLE_REWARD, DDPG_GAMMA, USE_DEFAULT,
|
|
||||||
DDPG_BATCH_SIZE, ACTOR_LEARNING_RATE,
|
|
||||||
CRITIC_LEARNING_RATE, UPDATE_EPOCHS,
|
|
||||||
ACTOR_HIDDEN_SIZES, CRITIC_HIDDEN_SIZES,
|
|
||||||
DNN_TRAIN_ITER, DNN_EXPLORE, DNN_EXPLORE_ITER,
|
|
||||||
DNN_NOISE_SCALE_BEGIN, DNN_NOISE_SCALE_END,
|
|
||||||
DNN_DEBUG, DNN_DEBUG_INTERVAL, GPR_DEBUG, UCB_BETA,
|
|
||||||
GPR_MODEL_NAME, ENABLE_DUMMY_ENCODER, DNN_GD_ITER)
|
|
||||||
|
|
||||||
from website.settings import INIT_FLIP_PROB, FLIP_PROB_DECAY
|
|
||||||
|
|
||||||
|
|
||||||
LOG = get_task_logger(__name__)
|
LOG = get_task_logger(__name__)
|
||||||
|
@ -339,6 +323,7 @@ def train_ddpg(result_id):
|
||||||
LOG.info('Add training data to ddpg and train ddpg')
|
LOG.info('Add training data to ddpg and train ddpg')
|
||||||
result = Result.objects.get(pk=result_id)
|
result = Result.objects.get(pk=result_id)
|
||||||
session = Result.objects.get(pk=result_id).session
|
session = Result.objects.get(pk=result_id).session
|
||||||
|
params = JSONUtil.loads(session.hyper_parameters)
|
||||||
session_results = Result.objects.filter(session=session,
|
session_results = Result.objects.filter(session=session,
|
||||||
creation_time__lt=result.creation_time)
|
creation_time__lt=result.creation_time)
|
||||||
result_info = {}
|
result_info = {}
|
||||||
|
@ -418,16 +403,16 @@ def train_ddpg(result_id):
|
||||||
LOG.info('reward: %f', reward)
|
LOG.info('reward: %f', reward)
|
||||||
|
|
||||||
# Update ddpg
|
# Update ddpg
|
||||||
ddpg = DDPG(n_actions=knob_num, n_states=metric_num, alr=ACTOR_LEARNING_RATE,
|
ddpg = DDPG(n_actions=knob_num, n_states=metric_num, alr=params['ACTOR_LEARNING_RATE'],
|
||||||
clr=CRITIC_LEARNING_RATE, gamma=DDPG_GAMMA, batch_size=DDPG_BATCH_SIZE,
|
clr=params['CRITIC_LEARNING_RATE'], gamma=params['DDPG_GAMMA'],
|
||||||
a_hidden_sizes=ACTOR_HIDDEN_SIZES, c_hidden_sizes=CRITIC_HIDDEN_SIZES,
|
batch_size=params['DDPG_BATCH_SIZE'], a_hidden_sizes=params['ACTOR_HIDDEN_SIZES'],
|
||||||
use_default=USE_DEFAULT)
|
c_hidden_sizes=params['CRITIC_HIDDEN_SIZES'], use_default=params['USE_DEFAULT'])
|
||||||
if session.ddpg_actor_model and session.ddpg_critic_model:
|
if session.ddpg_actor_model and session.ddpg_critic_model:
|
||||||
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
|
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
|
||||||
if session.ddpg_reply_memory:
|
if session.ddpg_reply_memory:
|
||||||
ddpg.replay_memory.set(session.ddpg_reply_memory)
|
ddpg.replay_memory.set(session.ddpg_reply_memory)
|
||||||
ddpg.add_sample(normalized_metric_data, knob_data, reward, normalized_metric_data)
|
ddpg.add_sample(normalized_metric_data, knob_data, reward, normalized_metric_data)
|
||||||
for _ in range(UPDATE_EPOCHS):
|
for _ in range(params['UPDATE_EPOCHS']):
|
||||||
ddpg.update()
|
ddpg.update()
|
||||||
session.ddpg_actor_model, session.ddpg_critic_model = ddpg.get_model()
|
session.ddpg_actor_model, session.ddpg_critic_model = ddpg.get_model()
|
||||||
session.ddpg_reply_memory = ddpg.replay_memory.get()
|
session.ddpg_reply_memory = ddpg.replay_memory.get()
|
||||||
|
@ -459,6 +444,7 @@ def configuration_recommendation_ddpg(result_info): # pylint: disable=invalid-n
|
||||||
result_list = Result.objects.filter(pk=result_id)
|
result_list = Result.objects.filter(pk=result_id)
|
||||||
result = result_list.first()
|
result = result_list.first()
|
||||||
session = result.session
|
session = result.session
|
||||||
|
params = JSONUtil.loads(session.hyper_parameters)
|
||||||
agg_data = DataUtil.aggregate_data(result_list)
|
agg_data = DataUtil.aggregate_data(result_list)
|
||||||
metric_data, _ = clean_metric_data(agg_data['y_matrix'], agg_data['y_columnlabels'], session)
|
metric_data, _ = clean_metric_data(agg_data['y_matrix'], agg_data['y_columnlabels'], session)
|
||||||
metric_data = metric_data.flatten()
|
metric_data = metric_data.flatten()
|
||||||
|
@ -469,8 +455,9 @@ def configuration_recommendation_ddpg(result_info): # pylint: disable=invalid-n
|
||||||
knob_num = len(knob_labels)
|
knob_num = len(knob_labels)
|
||||||
metric_num = len(metric_data)
|
metric_num = len(metric_data)
|
||||||
|
|
||||||
ddpg = DDPG(n_actions=knob_num, n_states=metric_num, a_hidden_sizes=ACTOR_HIDDEN_SIZES,
|
ddpg = DDPG(n_actions=knob_num, n_states=metric_num,
|
||||||
c_hidden_sizes=CRITIC_HIDDEN_SIZES, use_default=USE_DEFAULT)
|
a_hidden_sizes=params['ACTOR_HIDDEN_SIZES'],
|
||||||
|
c_hidden_sizes=params['CRITIC_HIDDEN_SIZES'], use_default=params['USE_DEFAULT'])
|
||||||
if session.ddpg_actor_model is not None and session.ddpg_critic_model is not None:
|
if session.ddpg_actor_model is not None and session.ddpg_critic_model is not None:
|
||||||
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
|
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
|
||||||
if session.ddpg_reply_memory is not None:
|
if session.ddpg_reply_memory is not None:
|
||||||
|
@ -505,6 +492,8 @@ def combine_workload(target_data):
|
||||||
workload_metric_data = JSONUtil.loads(workload_metric_data.data)
|
workload_metric_data = JSONUtil.loads(workload_metric_data.data)
|
||||||
|
|
||||||
newest_result = Result.objects.get(pk=target_data['newest_result_id'])
|
newest_result = Result.objects.get(pk=target_data['newest_result_id'])
|
||||||
|
session = newest_result.session
|
||||||
|
params = JSONUtil.loads(session.hyper_parameters)
|
||||||
cleaned_workload_knob_data = clean_knob_data(workload_knob_data["data"],
|
cleaned_workload_knob_data = clean_knob_data(workload_knob_data["data"],
|
||||||
workload_knob_data["columnlabels"],
|
workload_knob_data["columnlabels"],
|
||||||
newest_result.session)
|
newest_result.session)
|
||||||
|
@ -535,7 +524,7 @@ def combine_workload(target_data):
|
||||||
pipeline_run=latest_pipeline_run,
|
pipeline_run=latest_pipeline_run,
|
||||||
workload=mapped_workload,
|
workload=mapped_workload,
|
||||||
task_type=PipelineTaskType.RANKED_KNOBS)
|
task_type=PipelineTaskType.RANKED_KNOBS)
|
||||||
ranked_knobs = JSONUtil.loads(ranked_knobs.data)[:IMPORTANT_KNOB_NUMBER]
|
ranked_knobs = JSONUtil.loads(ranked_knobs.data)[:params['IMPORTANT_KNOB_NUMBER']]
|
||||||
ranked_knob_idxs = [i for i, cl in enumerate(X_columnlabels) if cl in ranked_knobs]
|
ranked_knob_idxs = [i for i, cl in enumerate(X_columnlabels) if cl in ranked_knobs]
|
||||||
X_workload = X_workload[:, ranked_knob_idxs]
|
X_workload = X_workload[:, ranked_knob_idxs]
|
||||||
X_target = X_target[:, ranked_knob_idxs]
|
X_target = X_target[:, ranked_knob_idxs]
|
||||||
|
@ -577,7 +566,7 @@ def combine_workload(target_data):
|
||||||
X_matrix = np.vstack([X_target, X_workload])
|
X_matrix = np.vstack([X_target, X_workload])
|
||||||
|
|
||||||
# Dummy encode categorial variables
|
# Dummy encode categorial variables
|
||||||
if ENABLE_DUMMY_ENCODER:
|
if enable_dummy_encoder:
|
||||||
categorical_info = DataUtil.dummy_encoder_helper(X_columnlabels,
|
categorical_info = DataUtil.dummy_encoder_helper(X_columnlabels,
|
||||||
mapped_workload.dbms)
|
mapped_workload.dbms)
|
||||||
dummy_encoder = DummyEncoder(categorical_info['n_values'],
|
dummy_encoder = DummyEncoder(categorical_info['n_values'],
|
||||||
|
@ -632,8 +621,8 @@ def combine_workload(target_data):
|
||||||
constraint_helper = ParamConstraintHelper(scaler=X_scaler,
|
constraint_helper = ParamConstraintHelper(scaler=X_scaler,
|
||||||
encoder=dummy_encoder,
|
encoder=dummy_encoder,
|
||||||
binary_vars=binary_encoder,
|
binary_vars=binary_encoder,
|
||||||
init_flip_prob=INIT_FLIP_PROB,
|
init_flip_prob=params['INIT_FLIP_PROB'],
|
||||||
flip_prob_decay=FLIP_PROB_DECAY)
|
flip_prob_decay=params['FLIP_PROB_DECAY'])
|
||||||
|
|
||||||
# FIXME (dva): check if these are good values for the ridge
|
# FIXME (dva): check if these are good values for the ridge
|
||||||
# ridge = np.empty(X_scaled.shape[0])
|
# ridge = np.empty(X_scaled.shape[0])
|
||||||
|
@ -671,6 +660,8 @@ def configuration_recommendation(recommendation_input):
|
||||||
target_data, algorithm = recommendation_input
|
target_data, algorithm = recommendation_input
|
||||||
LOG.info('configuration_recommendation called')
|
LOG.info('configuration_recommendation called')
|
||||||
newest_result = Result.objects.get(pk=target_data['newest_result_id'])
|
newest_result = Result.objects.get(pk=target_data['newest_result_id'])
|
||||||
|
session = newest_result.session
|
||||||
|
params = session.hyper_parameters
|
||||||
|
|
||||||
if target_data['bad'] is True:
|
if target_data['bad'] is True:
|
||||||
target_data_res = create_and_save_recommendation(
|
target_data_res = create_and_save_recommendation(
|
||||||
|
@ -687,7 +678,7 @@ def configuration_recommendation(recommendation_input):
|
||||||
|
|
||||||
# FIXME: we should generate more samples and use a smarter sampling
|
# FIXME: we should generate more samples and use a smarter sampling
|
||||||
# technique
|
# technique
|
||||||
num_samples = NUM_SAMPLES
|
num_samples = params['NUM_SAMPLES']
|
||||||
X_samples = np.empty((num_samples, X_scaled.shape[1]))
|
X_samples = np.empty((num_samples, X_scaled.shape[1]))
|
||||||
for i in range(X_scaled.shape[1]):
|
for i in range(X_scaled.shape[1]):
|
||||||
X_samples[:, i] = np.random.rand(num_samples) * (X_max[i] - X_min[i]) + X_min[i]
|
X_samples[:, i] = np.random.rand(num_samples) * (X_max[i] - X_min[i]) + X_min[i]
|
||||||
|
@ -697,7 +688,7 @@ def configuration_recommendation(recommendation_input):
|
||||||
q.put((y_scaled[x][0], x))
|
q.put((y_scaled[x][0], x))
|
||||||
|
|
||||||
i = 0
|
i = 0
|
||||||
while i < TOP_NUM_CONFIG:
|
while i < params['TOP_NUM_CONFIG']:
|
||||||
try:
|
try:
|
||||||
item = q.get_nowait()
|
item = q.get_nowait()
|
||||||
# Tensorflow get broken if we use the training data points as
|
# Tensorflow get broken if we use the training data points as
|
||||||
|
@ -714,56 +705,58 @@ def configuration_recommendation(recommendation_input):
|
||||||
except queue.Empty:
|
except queue.Empty:
|
||||||
break
|
break
|
||||||
|
|
||||||
session = newest_result.session
|
|
||||||
res = None
|
res = None
|
||||||
|
|
||||||
if algorithm == AlgorithmType.DNN:
|
if algorithm == AlgorithmType.DNN:
|
||||||
# neural network model
|
# neural network model
|
||||||
model_nn = NeuralNet(n_input=X_samples.shape[1],
|
model_nn = NeuralNet(n_input=X_samples.shape[1],
|
||||||
batch_size=X_samples.shape[0],
|
batch_size=X_samples.shape[0],
|
||||||
explore_iters=DNN_EXPLORE_ITER,
|
explore_iters=params['DNN_EXPLORE_ITER'],
|
||||||
noise_scale_begin=DNN_NOISE_SCALE_BEGIN,
|
noise_scale_begin=params['DNN_NOISE_SCALE_BEGIN'],
|
||||||
noise_scale_end=DNN_NOISE_SCALE_END,
|
noise_scale_end=params['DNN_NOISE_SCALE_END'],
|
||||||
debug=DNN_DEBUG,
|
debug=params['DNN_DEBUG'],
|
||||||
debug_interval=DNN_DEBUG_INTERVAL)
|
debug_interval=params['DNN_DEBUG_INTERVAL'])
|
||||||
if session.dnn_model is not None:
|
if session.dnn_model is not None:
|
||||||
model_nn.set_weights_bin(session.dnn_model)
|
model_nn.set_weights_bin(session.dnn_model)
|
||||||
model_nn.fit(X_scaled, y_scaled, fit_epochs=DNN_TRAIN_ITER)
|
model_nn.fit(X_scaled, y_scaled, fit_epochs=params['DNN_TRAIN_ITER'])
|
||||||
res = model_nn.recommend(X_samples, X_min, X_max,
|
res = model_nn.recommend(X_samples, X_min, X_max,
|
||||||
explore=DNN_EXPLORE, recommend_epochs=DNN_GD_ITER)
|
explore=params['DNN_EXPLORE'],
|
||||||
|
recommend_epochs=params['DNN_GD_ITER'])
|
||||||
session.dnn_model = model_nn.get_weights_bin()
|
session.dnn_model = model_nn.get_weights_bin()
|
||||||
session.save()
|
session.save()
|
||||||
|
|
||||||
elif algorithm == AlgorithmType.GPR:
|
elif algorithm == AlgorithmType.GPR:
|
||||||
# default gpr model
|
# default gpr model
|
||||||
if USE_GPFLOW:
|
if params['USE_GPFLOW']:
|
||||||
model_kwargs = {}
|
model_kwargs = {}
|
||||||
model_kwargs['model_learning_rate'] = HP_LEARNING_RATE
|
model_kwargs['model_learning_rate'] = params['HP_LEARNING_RATE']
|
||||||
model_kwargs['model_maxiter'] = HP_MAX_ITER
|
model_kwargs['model_maxiter'] = params['HP_MAX_ITER']
|
||||||
opt_kwargs = {}
|
opt_kwargs = {}
|
||||||
opt_kwargs['learning_rate'] = DEFAULT_LEARNING_RATE
|
opt_kwargs['learning_rate'] = params['DEFAULT_LEARNING_RATE']
|
||||||
opt_kwargs['maxiter'] = MAX_ITER
|
opt_kwargs['maxiter'] = params['MAX_ITER']
|
||||||
opt_kwargs['bounds'] = [X_min, X_max]
|
opt_kwargs['bounds'] = [X_min, X_max]
|
||||||
opt_kwargs['debug'] = GPR_DEBUG
|
opt_kwargs['debug'] = params['GPR_DEBUG']
|
||||||
opt_kwargs['ucb_beta'] = ucb.get_ucb_beta(UCB_BETA, scale=DEFAULT_UCB_SCALE,
|
opt_kwargs['ucb_beta'] = ucb.get_ucb_beta(params['UCB_BETA'],
|
||||||
|
scale=params['DEFAULT_UCB_SCALE'],
|
||||||
t=i + 1., ndim=X_scaled.shape[1])
|
t=i + 1., ndim=X_scaled.shape[1])
|
||||||
tf.reset_default_graph()
|
tf.reset_default_graph()
|
||||||
graph = tf.get_default_graph()
|
graph = tf.get_default_graph()
|
||||||
gpflow.reset_default_session(graph=graph)
|
gpflow.reset_default_session(graph=graph)
|
||||||
m = gpr_models.create_model(GPR_MODEL_NAME, X=X_scaled, y=y_scaled, **model_kwargs)
|
m = gpr_models.create_model(params['GPR_MODEL_NAME'], X=X_scaled, y=y_scaled,
|
||||||
|
**model_kwargs)
|
||||||
res = tf_optimize(m.model, X_samples, **opt_kwargs)
|
res = tf_optimize(m.model, X_samples, **opt_kwargs)
|
||||||
else:
|
else:
|
||||||
model = GPRGD(length_scale=DEFAULT_LENGTH_SCALE,
|
model = GPRGD(length_scale=params['DEFAULT_LENGTH_SCALE'],
|
||||||
magnitude=DEFAULT_MAGNITUDE,
|
magnitude=params['DEFAULT_MAGNITUDE'],
|
||||||
max_train_size=MAX_TRAIN_SIZE,
|
max_train_size=params['MAX_TRAIN_SIZE'],
|
||||||
batch_size=BATCH_SIZE,
|
batch_size=params['BATCH_SIZE'],
|
||||||
num_threads=NUM_THREADS,
|
num_threads=params['NUM_THREADS'],
|
||||||
learning_rate=DEFAULT_LEARNING_RATE,
|
learning_rate=params['DEFAULT_LEARNING_RATE'],
|
||||||
epsilon=DEFAULT_EPSILON,
|
epsilon=params['DEFAULT_EPSILON'],
|
||||||
max_iter=MAX_ITER,
|
max_iter=params['MAX_ITER'],
|
||||||
sigma_multiplier=DEFAULT_SIGMA_MULTIPLIER,
|
sigma_multiplier=params['DEFAULT_SIGMA_MULTIPLIER'],
|
||||||
mu_multiplier=DEFAULT_MU_MULTIPLIER,
|
mu_multiplier=params['DEFAULT_MU_MULTIPLIER'],
|
||||||
ridge=DEFAULT_RIDGE)
|
ridge=params['DEFAULT_RIDGE'])
|
||||||
model.fit(X_scaled, y_scaled, X_min, X_max)
|
model.fit(X_scaled, y_scaled, X_min, X_max)
|
||||||
res = model.predict(X_samples, constraint_helper=constraint_helper)
|
res = model.predict(X_samples, constraint_helper=constraint_helper)
|
||||||
|
|
||||||
|
@ -771,7 +764,7 @@ def configuration_recommendation(recommendation_input):
|
||||||
best_config = res.minl_conf[best_config_idx, :]
|
best_config = res.minl_conf[best_config_idx, :]
|
||||||
best_config = X_scaler.inverse_transform(best_config)
|
best_config = X_scaler.inverse_transform(best_config)
|
||||||
|
|
||||||
if ENABLE_DUMMY_ENCODER:
|
if enable_dummy_encoder:
|
||||||
# Decode one-hot encoding into categorical knobs
|
# Decode one-hot encoding into categorical knobs
|
||||||
best_config = dummy_encoder.inverse_transform(best_config)
|
best_config = dummy_encoder.inverse_transform(best_config)
|
||||||
|
|
||||||
|
@ -821,6 +814,8 @@ def map_workload(map_workload_input):
|
||||||
target_data['pipeline_run'] = latest_pipeline_run.pk
|
target_data['pipeline_run'] = latest_pipeline_run.pk
|
||||||
|
|
||||||
newest_result = Result.objects.get(pk=target_data['newest_result_id'])
|
newest_result = Result.objects.get(pk=target_data['newest_result_id'])
|
||||||
|
session = newest_result.session
|
||||||
|
params = JSONUtil.loads(session.hyper_parameters)
|
||||||
target_workload = newest_result.workload
|
target_workload = newest_result.workload
|
||||||
X_columnlabels = np.array(target_data['X_columnlabels'])
|
X_columnlabels = np.array(target_data['X_columnlabels'])
|
||||||
y_columnlabels = np.array(target_data['y_columnlabels'])
|
y_columnlabels = np.array(target_data['y_columnlabels'])
|
||||||
|
@ -870,7 +865,7 @@ def map_workload(map_workload_input):
|
||||||
# for the first workload
|
# for the first workload
|
||||||
global_ranked_knobs = load_data_helper(
|
global_ranked_knobs = load_data_helper(
|
||||||
pipeline_data, unique_workload,
|
pipeline_data, unique_workload,
|
||||||
PipelineTaskType.RANKED_KNOBS)[:IMPORTANT_KNOB_NUMBER]
|
PipelineTaskType.RANKED_KNOBS)[:params['IMPORTANT_KNOB_NUMBER']]
|
||||||
global_pruned_metrics = load_data_helper(
|
global_pruned_metrics = load_data_helper(
|
||||||
pipeline_data, unique_workload, PipelineTaskType.PRUNED_METRICS)
|
pipeline_data, unique_workload, PipelineTaskType.PRUNED_METRICS)
|
||||||
ranked_knob_idxs = [i for i in range(X_matrix.shape[1]) if X_columnlabels[
|
ranked_knob_idxs = [i for i in range(X_matrix.shape[1]) if X_columnlabels[
|
||||||
|
@ -935,11 +930,11 @@ def map_workload(map_workload_input):
|
||||||
# and then predict the performance of each metric for each of
|
# and then predict the performance of each metric for each of
|
||||||
# the knob configurations attempted so far by the target.
|
# the knob configurations attempted so far by the target.
|
||||||
y_col = y_col.reshape(-1, 1)
|
y_col = y_col.reshape(-1, 1)
|
||||||
model = GPRNP(length_scale=DEFAULT_LENGTH_SCALE,
|
model = GPRNP(length_scale=params['DEFAULT_LENGTH_SCALE'],
|
||||||
magnitude=DEFAULT_MAGNITUDE,
|
magnitude=params['DEFAULT_MAGNITUDE'],
|
||||||
max_train_size=MAX_TRAIN_SIZE,
|
max_train_size=params['MAX_TRAIN_SIZE'],
|
||||||
batch_size=BATCH_SIZE)
|
batch_size=params['BATCH_SIZE'])
|
||||||
model.fit(X_scaled, y_col, ridge=DEFAULT_RIDGE)
|
model.fit(X_scaled, y_col, ridge=params['DEFAULT_RIDGE'])
|
||||||
predictions[:, j] = model.predict(X_target).ypreds.ravel()
|
predictions[:, j] = model.predict(X_target).ypreds.ravel()
|
||||||
# Bin each of the predicted metric columns by deciles and then
|
# Bin each of the predicted metric columns by deciles and then
|
||||||
# compute the score (i.e., distance) between the target workload
|
# compute the score (i.e., distance) between the target workload
|
||||||
|
|
|
@ -18,7 +18,7 @@ from analysis.preprocessing import (Bin, get_shuffle_indices,
|
||||||
DummyEncoder,
|
DummyEncoder,
|
||||||
consolidate_columnlabels)
|
consolidate_columnlabels)
|
||||||
from website.models import PipelineData, PipelineRun, Result, Workload
|
from website.models import PipelineData, PipelineRun, Result, Workload
|
||||||
from website.settings import RUN_EVERY, ENABLE_DUMMY_ENCODER
|
from website.settings import run_every, enable_dummy_encoder
|
||||||
from website.types import PipelineTaskType, WorkloadStatusType
|
from website.types import PipelineTaskType, WorkloadStatusType
|
||||||
from website.utils import DataUtil, JSONUtil
|
from website.utils import DataUtil, JSONUtil
|
||||||
|
|
||||||
|
@ -29,7 +29,7 @@ MIN_WORKLOAD_RESULTS_COUNT = 5
|
||||||
|
|
||||||
|
|
||||||
# Run the background tasks every 'RUN_EVERY' seconds
|
# Run the background tasks every 'RUN_EVERY' seconds
|
||||||
@periodic_task(run_every=RUN_EVERY, name="run_background_tasks")
|
@periodic_task(run_every=run_every, name="run_background_tasks")
|
||||||
def run_background_tasks():
|
def run_background_tasks():
|
||||||
LOG.debug("Starting background tasks")
|
LOG.debug("Starting background tasks")
|
||||||
# Find modified and not modified workloads, we only have to calculate for the
|
# Find modified and not modified workloads, we only have to calculate for the
|
||||||
|
@ -296,7 +296,7 @@ def run_knob_identification(knob_data, metric_data, dbms):
|
||||||
nonconst_metric_columnlabels.append(cl)
|
nonconst_metric_columnlabels.append(cl)
|
||||||
nonconst_metric_matrix = np.hstack(nonconst_metric_matrix)
|
nonconst_metric_matrix = np.hstack(nonconst_metric_matrix)
|
||||||
|
|
||||||
if ENABLE_DUMMY_ENCODER:
|
if enable_dummy_encoder:
|
||||||
# determine which knobs need encoding (enums with >2 possible values)
|
# determine which knobs need encoding (enums with >2 possible values)
|
||||||
|
|
||||||
categorical_info = DataUtil.dummy_encoder_helper(nonconst_knob_columnlabels,
|
categorical_info = DataUtil.dummy_encoder_helper(nonconst_knob_columnlabels,
|
||||||
|
|
|
@ -49,6 +49,10 @@
|
||||||
<td>{{ form.target_objective.label_tag }}</td>
|
<td>{{ form.target_objective.label_tag }}</td>
|
||||||
<td>{{ form.target_objective }}</td>
|
<td>{{ form.target_objective }}</td>
|
||||||
</tr>
|
</tr>
|
||||||
|
<tr id="target_obj_row">
|
||||||
|
<td>{{ form.hyper_parameters.label_tag }}</td>
|
||||||
|
<td>{{ form.hyper_parameters }}</td>
|
||||||
|
</tr>
|
||||||
<tr id="upload_code_row">
|
<tr id="upload_code_row">
|
||||||
<td>{{ form.gen_upload_code.label_tag }}</td>
|
<td>{{ form.gen_upload_code.label_tag }}</td>
|
||||||
<td>{{ form.gen_upload_code }}</td>
|
<td>{{ form.gen_upload_code }}</td>
|
||||||
|
|
|
@ -40,7 +40,7 @@ from .tasks import (aggregate_target_results, map_workload, train_ddpg,
|
||||||
configuration_recommendation, configuration_recommendation_ddpg)
|
configuration_recommendation, configuration_recommendation_ddpg)
|
||||||
from .types import (DBMSType, KnobUnitType, MetricType,
|
from .types import (DBMSType, KnobUnitType, MetricType,
|
||||||
TaskType, VarType, WorkloadStatusType, AlgorithmType)
|
TaskType, VarType, WorkloadStatusType, AlgorithmType)
|
||||||
from .utils import JSONUtil, LabelUtil, MediaUtil, TaskUtil
|
from .utils import (JSONUtil, LabelUtil, MediaUtil, TaskUtil, ConversionUtil, get_constants)
|
||||||
from .settings import LOG_DIR, TIME_ZONE
|
from .settings import LOG_DIR, TIME_ZONE
|
||||||
|
|
||||||
from .set_default_knobs import set_default_knobs
|
from .set_default_knobs import set_default_knobs
|
||||||
|
@ -330,12 +330,14 @@ def create_or_edit_session(request, project_id, session_id=''):
|
||||||
else:
|
else:
|
||||||
# Return a new form with defaults for creating a new session
|
# Return a new form with defaults for creating a new session
|
||||||
session = None
|
session = None
|
||||||
|
hyper_parameters = JSONUtil.dumps(utils.get_constants())
|
||||||
form_kwargs.update(
|
form_kwargs.update(
|
||||||
initial={
|
initial={
|
||||||
'dbms': DBMSCatalog.objects.get(
|
'dbms': DBMSCatalog.objects.get(
|
||||||
type=DBMSType.POSTGRES, version='9.6'),
|
type=DBMSType.POSTGRES, version='9.6'),
|
||||||
'algorithm': AlgorithmType.GPR,
|
'algorithm': AlgorithmType.GPR,
|
||||||
'target_objective': target_objectives.default(),
|
'target_objective': target_objectives.default(),
|
||||||
|
'hyper_parameters': hyper_parameters
|
||||||
})
|
})
|
||||||
form = SessionForm(**form_kwargs)
|
form = SessionForm(**form_kwargs)
|
||||||
context = {
|
context = {
|
||||||
|
|
Loading…
Reference in New Issue