restore CDBTune

This commit is contained in:
yangdsh 2019-12-05 06:13:26 +00:00 committed by Dana Van Aken
parent 1e17c78956
commit 5579d8d94f
3 changed files with 124 additions and 50 deletions

View File

@ -3,7 +3,7 @@
# #
# Copyright (c) 2017-18, Carnegie Mellon University Database Group # Copyright (c) 2017-18, Carnegie Mellon University Database Group
# #
# from: https://github.com/KqSMea8/CDBTune # from: https://github.com/KqSMea8/use_default
# Zhang, Ji, et al. "An end-to-end automatic cloud database tuning system using # Zhang, Ji, et al. "An end-to-end automatic cloud database tuning system using
# deep reinforcement learning." Proceedings of the 2019 International Conference # deep reinforcement learning." Proceedings of the 2019 International Conference
# on Management of Data. ACM, 2019 # on Management of Data. ACM, 2019
@ -23,8 +23,22 @@ LOG = get_analysis_logger(__name__)
class Actor(nn.Module): class Actor(nn.Module):
def __init__(self, n_states, n_actions, hidden_sizes): def __init__(self, n_states, n_actions, hidden_sizes, use_default):
super(Actor, self).__init__() super(Actor, self).__init__()
if use_default:
self.layers = nn.Sequential(
nn.Linear(n_states, 128),
nn.LeakyReLU(negative_slope=0.2),
nn.BatchNorm1d(hidden_sizes[0]),
nn.Linear(128, 128),
nn.Tanh(),
nn.Dropout(0.3),
nn.Linear(128, 128),
nn.Tanh(),
nn.Linear(128, 64),
nn.Linear(64, n_actions)
)
else:
self.layers = nn.Sequential( self.layers = nn.Sequential(
nn.Linear(n_states, hidden_sizes[0]), nn.Linear(n_states, hidden_sizes[0]),
nn.LeakyReLU(negative_slope=0.2), nn.LeakyReLU(negative_slope=0.2),
@ -58,11 +72,26 @@ class Actor(nn.Module):
class Critic(nn.Module): class Critic(nn.Module):
def __init__(self, n_states, n_actions, hidden_sizes): def __init__(self, n_states, n_actions, hidden_sizes, use_default):
super(Critic, self).__init__() super(Critic, self).__init__()
self.act = nn.Tanh()
if use_default:
self.state_input = nn.Linear(n_states, 128)
self.action_input = nn.Linear(n_actions, 128)
self.layers = nn.Sequential(
nn.Linear(256, 256),
nn.LeakyReLU(negative_slope=0.2),
nn.BatchNorm1d(256),
nn.Linear(256, 256),
nn.Linear(256, 64),
nn.Tanh(),
nn.Dropout(0.3),
nn.BatchNorm1d(64),
nn.Linear(64, 1)
)
else:
self.state_input = nn.Linear(n_states, hidden_sizes[0]) self.state_input = nn.Linear(n_states, hidden_sizes[0])
self.action_input = nn.Linear(n_actions, hidden_sizes[0]) self.action_input = nn.Linear(n_actions, hidden_sizes[0])
self.act = nn.Tanh()
self.layers = nn.Sequential( self.layers = nn.Sequential(
nn.Linear(hidden_sizes[0] * 2, hidden_sizes[1]), nn.Linear(hidden_sizes[0] * 2, hidden_sizes[1]),
nn.LeakyReLU(negative_slope=0.2), nn.LeakyReLU(negative_slope=0.2),
@ -72,7 +101,7 @@ class Critic(nn.Module):
nn.Tanh(), nn.Tanh(),
nn.Dropout(0.3), nn.Dropout(0.3),
nn.BatchNorm1d(hidden_sizes[2]), nn.BatchNorm1d(hidden_sizes[2]),
nn.Linear(hidden_sizes[2], 1), nn.Linear(hidden_sizes[2], 1)
) )
self._init_weights() self._init_weights()
@ -101,7 +130,8 @@ class DDPG(object):
def __init__(self, n_states, n_actions, model_name='', alr=0.001, clr=0.001, def __init__(self, n_states, n_actions, model_name='', alr=0.001, clr=0.001,
gamma=0.9, batch_size=32, tau=0.002, shift=0, memory_size=100000, gamma=0.9, batch_size=32, tau=0.002, shift=0, memory_size=100000,
a_hidden_sizes=[128, 128, 64], c_hidden_sizes=[128, 256, 64]): a_hidden_sizes=[128, 128, 64], c_hidden_sizes=[128, 256, 64],
use_default=False):
self.n_states = n_states self.n_states = n_states
self.n_actions = n_actions self.n_actions = n_actions
self.alr = alr self.alr = alr
@ -113,6 +143,7 @@ class DDPG(object):
self.a_hidden_sizes = a_hidden_sizes self.a_hidden_sizes = a_hidden_sizes
self.c_hidden_sizes = c_hidden_sizes self.c_hidden_sizes = c_hidden_sizes
self.shift = shift self.shift = shift
self.use_default = use_default
self._build_network() self._build_network()
@ -124,10 +155,12 @@ class DDPG(object):
return Variable(torch.FloatTensor(x)) return Variable(torch.FloatTensor(x))
def _build_network(self): def _build_network(self):
self.actor = Actor(self.n_states, self.n_actions, self.a_hidden_sizes) self.actor = Actor(self.n_states, self.n_actions, self.a_hidden_sizes, self.use_default)
self.target_actor = Actor(self.n_states, self.n_actions, self.a_hidden_sizes) self.target_actor = Actor(self.n_states, self.n_actions, self.a_hidden_sizes,
self.critic = Critic(self.n_states, self.n_actions, self.c_hidden_sizes) self.use_default)
self.target_critic = Critic(self.n_states, self.n_actions, self.c_hidden_sizes) self.critic = Critic(self.n_states, self.n_actions, self.c_hidden_sizes, self.use_default)
self.target_critic = Critic(self.n_states, self.n_actions, self.c_hidden_sizes,
self.use_default)
# Copy actor's parameters # Copy actor's parameters
self._update_target(self.target_actor, self.actor, tau=1.0) self._update_target(self.target_actor, self.actor, tau=1.0)

View File

@ -52,11 +52,11 @@ DEFAULT_LEARNING_RATE = 0.01
# a small bias when using training data points as starting points. # a small bias when using training data points as starting points.
GPR_EPS = 0.001 GPR_EPS = 0.001
DEFAULT_RIDGE = 1.0 DEFAULT_RIDGE = 0.01
DEFAULT_EPSILON = 1e-6 DEFAULT_EPSILON = 1e-6
DEFAULT_SIGMA_MULTIPLIER = 1.0 DEFAULT_SIGMA_MULTIPLIER = 3.0
DEFAULT_MU_MULTIPLIER = 1.0 DEFAULT_MU_MULTIPLIER = 1.0
@ -84,6 +84,13 @@ DNN_DEBUG = True
DNN_DEBUG_INTERVAL = 100 DNN_DEBUG_INTERVAL = 100
# ---DDPG CONSTRAINTS CONSTANTS--- # ---DDPG CONSTRAINTS CONSTANTS---
# Use a simple reward
DDPG_SIMPLE_REWARD = True
# The weight of future rewards in Q value
DDPG_GAMMA = 0.0
# Batch size in DDPG model # Batch size in DDPG model
DDPG_BATCH_SIZE = 32 DDPG_BATCH_SIZE = 32
@ -101,3 +108,14 @@ ACTOR_HIDDEN_SIZES = [128, 128, 64]
# The number of hidden units in each layer of the critic MLP # The number of hidden units in each layer of the critic MLP
CRITIC_HIDDEN_SIZES = [64, 128, 64] CRITIC_HIDDEN_SIZES = [64, 128, 64]
# Use the same setting from the CDBTune paper
USE_DEFAULT = True
# Overwrite the DDPG settings if using CDBTune
if USE_DEFAULT:
DDPG_SIMPLE_REWARD = False
DDPG_GAMMA = 0.99
DDPG_BATCH_SIZE = 32
ACTOR_LEARNING_RATE = 0.001
CRITIC_LEARNING_RATE = 0.001
UPDATE_EPOCHS = 1

View File

@ -36,6 +36,7 @@ from website.settings import (USE_GPFLOW, DEFAULT_LENGTH_SCALE, DEFAULT_MAGNITUD
DEFAULT_EPSILON, MAX_ITER, GPR_EPS, DEFAULT_EPSILON, MAX_ITER, GPR_EPS,
DEFAULT_SIGMA_MULTIPLIER, DEFAULT_MU_MULTIPLIER, DEFAULT_SIGMA_MULTIPLIER, DEFAULT_MU_MULTIPLIER,
DEFAULT_UCB_SCALE, HP_LEARNING_RATE, HP_MAX_ITER, DEFAULT_UCB_SCALE, HP_LEARNING_RATE, HP_MAX_ITER,
DDPG_SIMPLE_REWARD, DDPG_GAMMA, USE_DEFAULT,
DDPG_BATCH_SIZE, ACTOR_LEARNING_RATE, DDPG_BATCH_SIZE, ACTOR_LEARNING_RATE,
CRITIC_LEARNING_RATE, UPDATE_EPOCHS, CRITIC_LEARNING_RATE, UPDATE_EPOCHS,
ACTOR_HIDDEN_SIZES, CRITIC_HIDDEN_SIZES, ACTOR_HIDDEN_SIZES, CRITIC_HIDDEN_SIZES,
@ -285,18 +286,25 @@ def train_ddpg(result_id):
result = Result.objects.get(pk=result_id) result = Result.objects.get(pk=result_id)
session = Result.objects.get(pk=result_id).session session = Result.objects.get(pk=result_id).session
session_results = Result.objects.filter(session=session, session_results = Result.objects.filter(session=session,
creation_time__lte=result.creation_time) creation_time__lt=result.creation_time)
result_info = {} result_info = {}
result_info['newest_result_id'] = result_id result_info['newest_result_id'] = result_id
# Extract data from result # Extract data from result and previous results
result = Result.objects.filter(pk=result_id) result = Result.objects.filter(pk=result_id)
if len(session_results) == 0:
base_result_id = result_id
prev_result_id = result_id
else:
base_result_id = session_results[0].pk base_result_id = session_results[0].pk
prev_result_id = session_results[len(session_results)-1].pk
base_result = Result.objects.filter(pk=base_result_id) base_result = Result.objects.filter(pk=base_result_id)
prev_result = Result.objects.filter(pk=prev_result_id)
agg_data = DataUtil.aggregate_data(result) agg_data = DataUtil.aggregate_data(result)
metric_data = agg_data['y_matrix'].flatten() metric_data = agg_data['y_matrix'].flatten()
base_metric_data = (DataUtil.aggregate_data(base_result))['y_matrix'].flatten() base_metric_data = (DataUtil.aggregate_data(base_result))['y_matrix'].flatten()
prev_metric_data = (DataUtil.aggregate_data(prev_result))['y_matrix'].flatten()
metric_scalar = MinMaxScaler().fit(metric_data.reshape(1, -1)) metric_scalar = MinMaxScaler().fit(metric_data.reshape(1, -1))
normalized_metric_data = metric_scalar.transform(metric_data.reshape(1, -1))[0] normalized_metric_data = metric_scalar.transform(metric_data.reshape(1, -1))[0]
@ -323,21 +331,37 @@ def train_ddpg(result_id):
target_objective)) target_objective))
objective = metric_data[target_obj_idx] objective = metric_data[target_obj_idx]
base_objective = base_metric_data[target_obj_idx] base_objective = base_metric_data[target_obj_idx]
prev_objective = prev_metric_data[target_obj_idx]
metric_meta = db.target_objectives.get_metric_metadata( metric_meta = db.target_objectives.get_metric_metadata(
result.session.dbms.pk, result.session.target_objective) result.session.dbms.pk, result.session.target_objective)
# Calculate the reward # Calculate the reward
if DDPG_SIMPLE_REWARD:
objective = objective / base_objective objective = objective / base_objective
if metric_meta[target_objective].improvement == '(less is better)': if metric_meta[target_objective].improvement == '(less is better)':
reward = -objective reward = -objective
else: else:
reward = objective reward = objective
else:
if metric_meta[target_objective].improvement == '(less is better)':
if objective - base_objective <= 0: # positive reward
reward = (np.square((2 * base_objective - objective) / base_objective) - 1)\
* abs(2 * prev_objective - objective) / prev_objective
else: # negative reward
reward = -(np.square(objective / base_objective) - 1) * objective / prev_objective
else:
if objective - base_objective > 0: # positive reward
reward = (np.square(objective / base_objective) - 1) * objective / prev_objective
else: # negative reward
reward = -(np.square((2 * base_objective - objective) / base_objective) - 1)\
* abs(2 * prev_objective - objective) / prev_objective
LOG.info('reward: %f', reward) LOG.info('reward: %f', reward)
# Update ddpg # Update ddpg
ddpg = DDPG(n_actions=knob_num, n_states=metric_num, alr=ACTOR_LEARNING_RATE, ddpg = DDPG(n_actions=knob_num, n_states=metric_num, alr=ACTOR_LEARNING_RATE,
clr=CRITIC_LEARNING_RATE, gamma=0, batch_size=DDPG_BATCH_SIZE, clr=CRITIC_LEARNING_RATE, gamma=DDPG_GAMMA, batch_size=DDPG_BATCH_SIZE,
a_hidden_sizes=ACTOR_HIDDEN_SIZES, c_hidden_sizes=CRITIC_HIDDEN_SIZES) a_hidden_sizes=ACTOR_HIDDEN_SIZES, c_hidden_sizes=CRITIC_HIDDEN_SIZES,
use_default=USE_DEFAULT)
if session.ddpg_actor_model and session.ddpg_critic_model: if session.ddpg_actor_model and session.ddpg_critic_model:
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model) ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
if session.ddpg_reply_memory: if session.ddpg_reply_memory:
@ -368,7 +392,7 @@ def configuration_recommendation_ddpg(result_info): # pylint: disable=invalid-n
metric_num = len(metric_data) metric_num = len(metric_data)
ddpg = DDPG(n_actions=knob_num, n_states=metric_num, a_hidden_sizes=ACTOR_HIDDEN_SIZES, ddpg = DDPG(n_actions=knob_num, n_states=metric_num, a_hidden_sizes=ACTOR_HIDDEN_SIZES,
c_hidden_sizes=CRITIC_HIDDEN_SIZES) c_hidden_sizes=CRITIC_HIDDEN_SIZES, use_default=USE_DEFAULT)
if session.ddpg_actor_model is not None and session.ddpg_critic_model is not None: if session.ddpg_actor_model is not None and session.ddpg_critic_model is not None:
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model) ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
if session.ddpg_reply_memory is not None: if session.ddpg_reply_memory is not None:
@ -646,9 +670,8 @@ def configuration_recommendation(recommendation_input):
epsilon=DEFAULT_EPSILON, epsilon=DEFAULT_EPSILON,
max_iter=MAX_ITER, max_iter=MAX_ITER,
sigma_multiplier=DEFAULT_SIGMA_MULTIPLIER, sigma_multiplier=DEFAULT_SIGMA_MULTIPLIER,
mu_multiplier=DEFAULT_MU_MULTIPLIER, mu_multiplier=DEFAULT_MU_MULTIPLIER)
ridge=DEFAULT_RIDGE) model.fit(X_scaled, y_scaled, X_min, X_max, ridge=DEFAULT_RIDGE)
model.fit(X_scaled, y_scaled, X_min, X_max)
res = model.predict(X_samples, constraint_helper=constraint_helper) res = model.predict(X_samples, constraint_helper=constraint_helper)
best_config_idx = np.argmin(res.minl.ravel()) best_config_idx = np.argmin(res.minl.ravel())