use gpflow in workload mapping

This commit is contained in:
bohanjason 2020-01-22 07:38:18 -05:00 committed by Dana Van Aken
parent 25d1950e67
commit 6f0fcfd952
4 changed files with 72 additions and 78 deletions

View File

@ -16,13 +16,6 @@ from analysis.util import get_analysis_logger
LOG = get_analysis_logger(__name__)
class GPRResult():
def __init__(self, ypreds=None, sigmas=None):
self.ypreds = ypreds
self.sigmas = sigmas
class GPRGDResult():
def __init__(self, ypreds=None, sigmas=None, minl=None, minl_conf=None):
@ -32,20 +25,6 @@ class GPRGDResult():
self.minl_conf = minl_conf
def gpflow_predict(model, Xin):
fmean, fvar, _, _, _ = model._build_predict(Xin) # pylint: disable=protected-access
y_mean_var = model.likelihood.predict_mean_and_var(fmean, fvar)
y_mean = y_mean_var[0]
y_var = y_mean_var[1]
y_std = tf.sqrt(y_var)
session = model.enquire_session(session=None)
with session.as_default():
y_mean_value = session.run(y_mean)
y_std_value = session.run(y_std)
return GPRResult(y_mean_value, y_std_value)
def tf_optimize(model, Xnew_arr, learning_rate=0.01, maxiter=100, ucb_beta=3.,
active_dims=None, bounds=None, debug=True):
Xnew_arr = check_array(Xnew_arr, copy=False, warn_on_dtype=True, dtype=FLOAT_DTYPES)

View File

@ -0,0 +1,34 @@
#
# OtterTune - analysis/optimize.py
#
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
#
# Author: Dana Van Aken
import tensorflow as tf
from sklearn.utils import assert_all_finite, check_array
from sklearn.utils.validation import FLOAT_DTYPES
class GPRResult():
def __init__(self, ypreds=None, sigmas=None):
self.ypreds = ypreds
self.sigmas = sigmas
def gpflow_predict(model, Xin):
Xin = check_array(Xin, copy=False, warn_on_dtype=True, dtype=FLOAT_DTYPES)
fmean, fvar, _, _, _ = model._build_predict(Xin) # pylint: disable=protected-access
y_mean_var = model.likelihood.predict_mean_and_var(fmean, fvar)
y_mean = y_mean_var[0]
y_var = y_mean_var[1]
y_std = tf.sqrt(y_var)
session = model.enquire_session(session=None)
with session.as_default():
y_mean_value = session.run(y_mean)
y_std_value = session.run(y_std)
assert_all_finite(y_mean_value)
assert_all_finite(y_std_value)
return GPRResult(y_mean_value, y_std_value)

View File

@ -14,7 +14,7 @@ from analysis.gp_tf import GPR
from analysis.gp_tf import GPRGD
from analysis.gpr import gpr_models
from analysis.gpr.optimize import tf_optimize
from analysis.gpr.optimize import gpflow_predict
from analysis.gpr.predict import gpflow_predict
# test numpy version GPR
class TestGPRNP(unittest.TestCase):
@ -31,12 +31,12 @@ class TestGPRNP(unittest.TestCase):
cls.model.fit(X_train, y_train, ridge=1.0)
cls.gpr_result = cls.model.predict(X_test)
def test_gprnp_ypreds(self):
def test_ypreds(self):
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
expected_ypreds = [0.0181, 0.0014, 0.0006, 0.0015, 0.0039, 0.0014]
self.assertEqual(ypreds_round, expected_ypreds)
def test_gprnp_sigmas(self):
def test_sigmas(self):
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
expected_sigmas = [1.4142, 1.4142, 1.4142, 1.4142, 1.4142, 1.4142]
self.assertEqual(sigmas_round, expected_sigmas)
@ -57,23 +57,23 @@ class TestGPRTF(unittest.TestCase):
cls.model.fit(X_train, y_train)
cls.gpr_result = cls.model.predict(X_test)
def test_gprnp_ypreds(self):
def test_ypreds(self):
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
expected_ypreds = [0.0181, 0.0014, 0.0006, 0.0015, 0.0039, 0.0014]
self.assertEqual(ypreds_round, expected_ypreds)
def test_gprnp_sigmas(self):
def test_sigmas(self):
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
expected_sigmas = [1.4142, 1.4142, 1.4142, 1.4142, 1.4142, 1.4142]
self.assertEqual(sigmas_round, expected_sigmas)
# test GPFlow version GPR
class TestGPRGPF(unittest.TestCase):
class TestGPRGPFlow(unittest.TestCase):
@classmethod
def setUpClass(cls):
super(TestGPRGPF, cls).setUpClass()
super(TestGPRGPFlow, cls).setUpClass()
boston = datasets.load_boston()
data = boston['data']
X_train = data[0:500]
@ -88,51 +88,23 @@ class TestGPRGPF(unittest.TestCase):
**model_kwargs)
cls.gpr_result = gpflow_predict(cls.m.model, X_test)
def test_gprnp_ypreds(self):
def test_ypreds(self):
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
expected_ypreds = [0.0181, 0.0014, 0.0006, 0.0015, 0.0039, 0.0014]
self.assertEqual(ypreds_round, expected_ypreds)
def test_gprnp_sigmas(self):
def test_sigmas(self):
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
expected_sigmas = [1.4142, 1.4142, 1.4142, 1.4142, 1.4142, 1.4142]
self.assertEqual(sigmas_round, expected_sigmas)
# test Tensorflow GPRGD model
class TestGPRGD(unittest.TestCase):
# test GPFlow version Gradient Descent
class TestGDGPFlow(unittest.TestCase):
@classmethod
def setUpClass(cls):
super(TestGPRGD, cls).setUpClass()
boston = datasets.load_boston()
data = boston['data']
X_train = data[0:500]
X_test = data[500:]
y_train = boston['target'][0:500].reshape(500, 1)
Xmin = np.min(X_train, 0)
Xmax = np.max(X_train, 0)
cls.model = GPRGD(length_scale=1.0, magnitude=1.0, max_iter=1, learning_rate=0, ridge=1.0)
cls.model.fit(X_train, y_train, Xmin, Xmax)
cls.gpr_result = cls.model.predict(X_test)
def test_gprnp_ypreds(self):
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
expected_ypreds = [0.0181, 0.0014, 0.0006, 0.0015, 0.0039, 0.0014]
self.assertEqual(ypreds_round, expected_ypreds)
def test_gprnp_sigmas(self):
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
expected_sigmas = [1.4142, 1.4142, 1.4142, 1.4142, 1.4142, 1.4142]
self.assertEqual(sigmas_round, expected_sigmas)
# test Gradient Descent in GPFlow model
class TestGPFGD(unittest.TestCase):
@classmethod
def setUpClass(cls):
super(TestGPFGD, cls).setUpClass()
super(TestGDGPFlow, cls).setUpClass()
boston = datasets.load_boston()
data = boston['data']
X_train = data[0:500]
@ -158,23 +130,23 @@ class TestGPFGD(unittest.TestCase):
cls.m = gpr_models.create_model('BasicGP', X=X_train, y=y_train, **model_kwargs)
cls.gpr_result = tf_optimize(cls.m.model, X_test, **opt_kwargs)
def test_gprnp_ypreds(self):
def test_ypreds(self):
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
expected_ypreds = [0.5272]
self.assertEqual(ypreds_round, expected_ypreds)
def test_gprnp_sigmas(self):
def test_sigmas(self):
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
expected_sigmas = [1.4153]
self.assertEqual(sigmas_round, expected_sigmas)
# test Gradient Descent in Tensorflow GPRGD model
class TestGPRGDGD(unittest.TestCase):
# test Tensorflow version Gradient Descent
class TestGDTF(unittest.TestCase):
@classmethod
def setUpClass(cls):
super(TestGPRGDGD, cls).setUpClass()
super(TestGDTF, cls).setUpClass()
boston = datasets.load_boston()
data = boston['data']
X_train = data[0:500]
@ -191,12 +163,12 @@ class TestGPRGDGD(unittest.TestCase):
cls.model.fit(X_train, y_train, Xmin, Xmax)
cls.gpr_result = cls.model.predict(X_test)
def test_gprnp_ypreds(self):
def test_ypreds(self):
ypreds_round = [round(x[0], 4) for x in self.gpr_result.ypreds]
expected_ypreds = [0.5272]
self.assertEqual(ypreds_round, expected_ypreds)
def test_gprnp_sigmas(self):
def test_sigmas(self):
sigmas_round = [round(x[0], 4) for x in self.gpr_result.sigmas]
expected_sigmas = [1.4153]
self.assertEqual(sigmas_round, expected_sigmas)

View File

@ -22,7 +22,8 @@ from analysis.gp_tf import GPRGD
from analysis.nn_tf import NeuralNet
from analysis.gpr import gpr_models
from analysis.gpr import ucb
from analysis.gpr.optimize import tf_optimize, gpflow_predict
from analysis.gpr.optimize import tf_optimize
from analysis.gpr.predict import gpflow_predict
from analysis.preprocessing import Bin, DummyEncoder
from analysis.constraints import ParamConstraintHelper
from website.models import PipelineData, PipelineRun, Result, Workload, SessionKnob, MetricCatalog
@ -932,15 +933,23 @@ def map_workload(map_workload_input):
# and then predict the performance of each metric for each of
# the knob configurations attempted so far by the target.
y_col = y_col.reshape(-1, 1)
model_kwargs = {'lengthscales': params['GPR_LENGTH_SCALE'],
'variance': params['GPR_MAGNITUDE'],
'noise_variance': params['GPR_RIDGE']}
tf.reset_default_graph()
graph = tf.get_default_graph()
gpflow.reset_default_session(graph=graph)
m = gpr_models.create_model(params['GPR_MODEL_NAME'], X=X_scaled, y=y_col,
**model_kwargs)
gpr_result = gpflow_predict(m.model, X_target)
if params['GPR_USE_GPFLOW']:
model_kwargs = {'lengthscales': params['GPR_LENGTH_SCALE'],
'variance': params['GPR_MAGNITUDE'],
'noise_variance': params['GPR_RIDGE']}
tf.reset_default_graph()
graph = tf.get_default_graph()
gpflow.reset_default_session(graph=graph)
m = gpr_models.create_model(params['GPR_MODEL_NAME'], X=X_scaled, y=y_col,
**model_kwargs)
gpr_result = gpflow_predict(m.model, X_target)
else:
model = GPRNP(length_scale=params['GPR_LENGTH_SCALE'],
magnitude=params['GPR_MAGNITUDE'],
max_train_size=params['GPR_MAX_TRAIN_SIZE'],
batch_size=params['GPR_BATCH_SIZE'])
model.fit(X_scaled, y_col, ridge=params['GPR_RIDGE'])
gpr_result = model.predict(X_target)
predictions[:, j] = gpr_result.ypreds.ravel()
# Bin each of the predicted metric columns by deciles and then
# compute the score (i.e., distance) between the target workload