change test condition
This commit is contained in:
parent
ae85ea26a1
commit
70b9a7c566
|
@ -1076,10 +1076,10 @@ def integration_tests():
|
||||||
# wait celery periodic task finishes
|
# wait celery periodic task finishes
|
||||||
assert wait_pipeline_data_ready(), "Pipeline data failed"
|
assert wait_pipeline_data_ready(), "Pipeline data failed"
|
||||||
|
|
||||||
total_n = 30
|
total_n = 20
|
||||||
first_n = 5
|
|
||||||
last_n = 10
|
last_n = 10
|
||||||
average = 0
|
|
||||||
|
max_gain = 0
|
||||||
simulate_db_run(1, {'effective_cache_size': '0kB'})
|
simulate_db_run(1, {'effective_cache_size': '0kB'})
|
||||||
for i in range(2, total_n + 2):
|
for i in range(2, total_n + 2):
|
||||||
LOG.info('Test GPR (gaussian process regression)')
|
LOG.info('Test GPR (gaussian process regression)')
|
||||||
|
@ -1088,12 +1088,12 @@ def integration_tests():
|
||||||
response = get_result(upload_code='ottertuneTestTuningGPR')
|
response = get_result(upload_code='ottertuneTestTuningGPR')
|
||||||
assert response['status'] == 'good'
|
assert response['status'] == 'good'
|
||||||
gain = simulate_db_run(i, response['recommendation'])
|
gain = simulate_db_run(i, response['recommendation'])
|
||||||
if i < first_n + 2:
|
if max_gain < gain:
|
||||||
average += gain / first_n
|
max_gain = gain
|
||||||
elif i > total_n - last_n + 2:
|
elif i > total_n - last_n + 2:
|
||||||
assert gain > average
|
assert gain > max_gain / 2.0
|
||||||
|
|
||||||
average = 0
|
max_gain = 0
|
||||||
simulate_db_run(1, {'effective_cache_size': '0kB'})
|
simulate_db_run(1, {'effective_cache_size': '0kB'})
|
||||||
for i in range(2, total_n + 2):
|
for i in range(2, total_n + 2):
|
||||||
LOG.info('Test DNN (deep neural network)')
|
LOG.info('Test DNN (deep neural network)')
|
||||||
|
@ -1102,12 +1102,12 @@ def integration_tests():
|
||||||
response = get_result(upload_code='ottertuneTestTuningDNN')
|
response = get_result(upload_code='ottertuneTestTuningDNN')
|
||||||
assert response['status'] == 'good'
|
assert response['status'] == 'good'
|
||||||
gain = simulate_db_run(i, response['recommendation'])
|
gain = simulate_db_run(i, response['recommendation'])
|
||||||
if i < first_n + 2:
|
if max_gain < gain:
|
||||||
average += gain / first_n
|
max_gain = gain
|
||||||
elif i > total_n - last_n + 2:
|
elif i > total_n - last_n + 2:
|
||||||
assert gain > average
|
assert gain > max_gain / 2.0
|
||||||
|
|
||||||
average = 0
|
max_gain = 0
|
||||||
simulate_db_run(1, {'effective_cache_size': '0kB'})
|
simulate_db_run(1, {'effective_cache_size': '0kB'})
|
||||||
for i in range(2, total_n + 2):
|
for i in range(2, total_n + 2):
|
||||||
upload_result(result_dir='./integrationTests/data/', prefix='x__',
|
upload_result(result_dir='./integrationTests/data/', prefix='x__',
|
||||||
|
@ -1115,10 +1115,10 @@ def integration_tests():
|
||||||
response = get_result(upload_code='ottertuneTestTuningDDPG')
|
response = get_result(upload_code='ottertuneTestTuningDDPG')
|
||||||
assert response['status'] == 'good'
|
assert response['status'] == 'good'
|
||||||
gain = simulate_db_run(i, response['recommendation'])
|
gain = simulate_db_run(i, response['recommendation'])
|
||||||
if i < first_n + 2:
|
if max_gain < gain:
|
||||||
average += gain / first_n
|
max_gain = gain
|
||||||
elif i > total_n - last_n + 2:
|
elif i > total_n - last_n + 2:
|
||||||
assert gain > average
|
assert gain > max_gain / 2.0
|
||||||
|
|
||||||
LOG.info("\n\nIntegration Tests: PASSED!!\n")
|
LOG.info("\n\nIntegration Tests: PASSED!!\n")
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue