simulate a DB tuning environment to test DDPG performance

This commit is contained in:
yangdsh 2019-10-21 19:23:27 +00:00 committed by Dana Van Aken
parent b215b156a4
commit 794418d29f
2 changed files with 151 additions and 5 deletions

View File

@ -3,8 +3,3 @@
#
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
#
from analysis.ddpg.ddpg import DDPG
__all__ = ["DDPG"]

View File

@ -0,0 +1,151 @@
#
# OtterTune - simulation.py
#
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
#
import random
import os
import sys
try:
import matplotlib.pyplot as plt
except (ModuleNotFoundError, ImportError):
plt = None
import numpy as np
import torch
sys.path.append("../")
from analysis.util import get_analysis_logger # noqa
from analysis.ddpg.ddpg import DDPG # noqa
LOG = get_analysis_logger(__name__)
class Environment(object):
def __init__(self, n_knob, n_metric, mode=0):
self.knob_dim = n_knob
self.metric_dim = n_metric
self.mode = mode
def identity_sqrt(self, knob_data):
n1 = self.knob_dim // 4
n2 = self.knob_dim // 4
part1 = np.sum(knob_data[0: n1])
part2 = np.sum(np.sqrt(knob_data[n1: n1 + n2]))
reward = np.array([part1 + part2]) / (self.knob_dim // 2)
metric_data = np.zeros(self.metric_dim)
return reward, metric_data
def borehole(self, knob_data):
# ref: http://www.sfu.ca/~ssurjano/borehole.html
# pylint: disable=invalid-name
rw = knob_data[0] * (0.15 - 0.05) + 0.05
r = knob_data[1] * (50000 - 100) + 100
Tu = knob_data[2] * (115600 - 63070) + 63070
Hu = knob_data[3] * (1110 - 990) + 990
Tl = knob_data[4] * (116 - 63.1) + 63.1
Hl = knob_data[5] * (820 - 700) + 700
L = knob_data[6] * (1680 - 1120) + 1120
Kw = knob_data[7] * (12045 - 9855) + 9855
frac = 2 * L * Tu / (np.log(r / rw) * rw ** 2 * Kw)
reward = 2 * np.pi * Tu * (Hu - Hl) / (np.log(r / rw) * (1 + frac + Tu / Tl))
return np.array([reward]), np.zeros(self.metric_dim)
def threshold(self, knob_data):
n1 = self.knob_dim // 4
n2 = self.knob_dim // 4
part1 = np.sum(knob_data[0: n1] > 0.9)
part2 = np.sum(knob_data[n1: n1 + n2] < 0.1)
reward = np.array([part1 + part2])
metric_data = np.zeros(self.metric_dim)
return reward, metric_data
def simulate(self, knob_data):
if self.mode == 0:
return self.identity_sqrt(knob_data)
elif self.mode == 1:
return self.threshold(knob_data)
elif self.mode == 2:
return self.borehole(knob_data)
def train_ddpg(env, gamma=0.99, tau=0.002, lr=0.01, batch_size=32, n_loops=1000):
results = []
x_axis = []
ddpg = DDPG(n_actions=env.knob_dim, n_states=env.metric_dim, gamma=gamma, tau=tau,
clr=lr, alr=lr, batch_size=batch_size)
knob_data = np.random.rand(env.knob_dim)
prev_metric_data = np.zeros(env.metric_dim)
for i in range(n_loops):
reward, metric_data = env.simulate(knob_data)
ddpg.add_sample(prev_metric_data, knob_data, reward, metric_data, False)
ddpg.update()
if i % 20 == 0:
results.append(run_ddpg(env, ddpg))
x_axis.append(i)
prev_metric_data = metric_data
knob_data = ddpg.choose_action(prev_metric_data)
return np.array(results), np.array(x_axis)
def run_ddpg(env, ddpg):
total_reward = 0.0
n_samples = 100
prev_metric_data = np.zeros(env.metric_dim)
for _ in range(n_samples):
knob_data = ddpg.choose_action(prev_metric_data)
reward, prev_metric_data = env.simulate(knob_data)
total_reward += reward
return total_reward / n_samples
def plotlines(x_axis, data1, data2, label1, label2, title, path):
if plt:
plt.plot(x_axis, data1, color='red', label=label1)
plt.plot(x_axis, data2, color='blue', label=label2)
plt.legend()
plt.xlabel("loops")
plt.ylabel("rewards")
plt.title(title)
plt.savefig(path)
plt.clf()
def main(knob_dim=192, metric_dim=60, lr=0.001, mode=0, n_loops=1000):
if not plt:
LOG.info("Cannot import matplotlib. Will write results to files instead of figures.")
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
env = Environment(knob_dim, metric_dim, mode=mode)
n_repeats = 5
for i in range(n_repeats):
if i == 0:
results1, x_axis = train_ddpg(env, gamma=0, lr=lr, n_loops=n_loops)
else:
results1 += train_ddpg(env, gamma=0, lr=lr, n_loops=n_loops)[0]
for i in range(n_repeats):
if i == 0:
results2, x_axis = train_ddpg(env, gamma=0.99, lr=lr, n_loops=n_loops)
else:
results2 += train_ddpg(env, gamma=0.99, lr=lr, n_loops=n_loops)[0]
results1 /= n_repeats
results2 /= n_repeats
title = "knob_{}_lr_{}".format(knob_dim, lr)
if plt:
if not os.path.exists("figures"):
os.mkdir("figures")
filename = "figures/{}.pdf".format(title)
plotlines(x_axis, results1, results2, "gamma=0", "gamma=0.99", title, filename)
else:
with open(title + '_1.csv', 'w') as f1:
for i, result in zip(x_axis, results1):
f1.write(str(i) + ',' + str(result[0]) + '\n')
with open(title + '_2.csv', 'w') as f2:
for i, result in zip(x_axis, results2):
f2.write(str(i) + ',' + str(result[0]) + '\n')
if __name__ == '__main__':
main()