choose algorithm based on option
This commit is contained in:
parent
be955cc812
commit
82a7d859c2
|
@ -78,10 +78,10 @@ class MapWorkload(UpdateTask): # pylint: disable=abstract-method
|
||||||
super(MapWorkload, self).on_success(retval, task_id, args, kwargs)
|
super(MapWorkload, self).on_success(retval, task_id, args, kwargs)
|
||||||
|
|
||||||
# Replace result with formatted result
|
# Replace result with formatted result
|
||||||
if not args[0]['bad']:
|
if not args[0][0]['bad']:
|
||||||
new_res = {
|
new_res = {
|
||||||
'scores': sorted(args[0]['scores'].items()),
|
'scores': sorted(args[0][0]['scores'].items()),
|
||||||
'mapped_workload_id': args[0]['mapped_workload'],
|
'mapped_workload_id': args[0][0]['mapped_workload'],
|
||||||
}
|
}
|
||||||
task_meta = TaskMeta.objects.get(task_id=task_id)
|
task_meta = TaskMeta.objects.get(task_id=task_id)
|
||||||
task_meta.result = new_res # Only store scores
|
task_meta.result = new_res # Only store scores
|
||||||
|
@ -97,7 +97,7 @@ class ConfigurationRecommendation(UpdateTask): # pylint: disable=abstract-metho
|
||||||
def on_success(self, retval, task_id, args, kwargs):
|
def on_success(self, retval, task_id, args, kwargs):
|
||||||
super(ConfigurationRecommendation, self).on_success(retval, task_id, args, kwargs)
|
super(ConfigurationRecommendation, self).on_success(retval, task_id, args, kwargs)
|
||||||
|
|
||||||
result_id = args[0]['newest_result_id']
|
result_id = args[0][0]['newest_result_id']
|
||||||
result = Result.objects.get(pk=result_id)
|
result = Result.objects.get(pk=result_id)
|
||||||
|
|
||||||
# Replace result with formatted result
|
# Replace result with formatted result
|
||||||
|
@ -141,7 +141,7 @@ def clean_knob_data(knob_matrix, knob_labels, session):
|
||||||
|
|
||||||
|
|
||||||
@task(base=AggregateTargetResults, name='aggregate_target_results')
|
@task(base=AggregateTargetResults, name='aggregate_target_results')
|
||||||
def aggregate_target_results(result_id):
|
def aggregate_target_results(result_id, algorithm='gpr'):
|
||||||
# Check that we've completed the background tasks at least once. We need
|
# Check that we've completed the background tasks at least once. We need
|
||||||
# this data in order to make a configuration recommendation (until we
|
# this data in order to make a configuration recommendation (until we
|
||||||
# implement a sampling technique to generate new training data).
|
# implement a sampling technique to generate new training data).
|
||||||
|
@ -159,7 +159,7 @@ def aggregate_target_results(result_id):
|
||||||
agg_data['newest_result_id'] = result_id
|
agg_data['newest_result_id'] = result_id
|
||||||
agg_data['bad'] = True
|
agg_data['bad'] = True
|
||||||
agg_data['config_recommend'] = random_knob_result
|
agg_data['config_recommend'] = random_knob_result
|
||||||
return agg_data
|
return agg_data, algorithm
|
||||||
|
|
||||||
# Aggregate all knob config results tried by the target so far in this
|
# Aggregate all knob config results tried by the target so far in this
|
||||||
# tuning session and this tuning workload.
|
# tuning session and this tuning workload.
|
||||||
|
@ -179,7 +179,7 @@ def aggregate_target_results(result_id):
|
||||||
agg_data['X_matrix'] = np.array(cleaned_agg_data[0])
|
agg_data['X_matrix'] = np.array(cleaned_agg_data[0])
|
||||||
agg_data['X_columnlabels'] = np.array(cleaned_agg_data[1])
|
agg_data['X_columnlabels'] = np.array(cleaned_agg_data[1])
|
||||||
|
|
||||||
return agg_data
|
return agg_data, algorithm
|
||||||
|
|
||||||
|
|
||||||
def gen_random_data(knobs):
|
def gen_random_data(knobs):
|
||||||
|
@ -331,7 +331,8 @@ def configuration_recommendation_ddpg(result_info): # pylint: disable=invalid-n
|
||||||
|
|
||||||
|
|
||||||
@task(base=ConfigurationRecommendation, name='configuration_recommendation')
|
@task(base=ConfigurationRecommendation, name='configuration_recommendation')
|
||||||
def configuration_recommendation(target_data):
|
def configuration_recommendation(recommendation_input):
|
||||||
|
target_data, algorithm = recommendation_input
|
||||||
LOG.info('configuration_recommendation called')
|
LOG.info('configuration_recommendation called')
|
||||||
latest_pipeline_run = PipelineRun.objects.get_latest()
|
latest_pipeline_run = PipelineRun.objects.get_latest()
|
||||||
|
|
||||||
|
@ -544,8 +545,11 @@ def configuration_recommendation(target_data):
|
||||||
project = newest_result.session.project.pk
|
project = newest_result.session.project.pk
|
||||||
full_path = os.path.join(MODEL_DIR, 'p' + str(project) + '_s' + str(session) + '_nn.weights')
|
full_path = os.path.join(MODEL_DIR, 'p' + str(project) + '_s' + str(session) + '_nn.weights')
|
||||||
|
|
||||||
|
res = None
|
||||||
|
assert algorithm in ['gpr', 'dnn']
|
||||||
|
|
||||||
|
if algorithm == 'dnn':
|
||||||
# neural network model
|
# neural network model
|
||||||
# FIXME: choose algorithm based on the session option
|
|
||||||
model_nn = NeuralNet(weights_file=full_path,
|
model_nn = NeuralNet(weights_file=full_path,
|
||||||
n_input=X_samples.shape[1],
|
n_input=X_samples.shape[1],
|
||||||
batch_size=X_samples.shape[0],
|
batch_size=X_samples.shape[0],
|
||||||
|
@ -555,7 +559,8 @@ def configuration_recommendation(target_data):
|
||||||
debug=True)
|
debug=True)
|
||||||
model_nn.fit(X_scaled, y_scaled)
|
model_nn.fit(X_scaled, y_scaled)
|
||||||
res = model_nn.recommend(X_samples, X_min, X_max, explore=True)
|
res = model_nn.recommend(X_samples, X_min, X_max, explore=True)
|
||||||
|
elif algorithm == 'gpr':
|
||||||
|
# default gpr model
|
||||||
model = GPRGD(length_scale=DEFAULT_LENGTH_SCALE,
|
model = GPRGD(length_scale=DEFAULT_LENGTH_SCALE,
|
||||||
magnitude=DEFAULT_MAGNITUDE,
|
magnitude=DEFAULT_MAGNITUDE,
|
||||||
max_train_size=MAX_TRAIN_SIZE,
|
max_train_size=MAX_TRAIN_SIZE,
|
||||||
|
@ -566,8 +571,8 @@ def configuration_recommendation(target_data):
|
||||||
max_iter=MAX_ITER,
|
max_iter=MAX_ITER,
|
||||||
sigma_multiplier=DEFAULT_SIGMA_MULTIPLIER,
|
sigma_multiplier=DEFAULT_SIGMA_MULTIPLIER,
|
||||||
mu_multiplier=DEFAULT_MU_MULTIPLIER)
|
mu_multiplier=DEFAULT_MU_MULTIPLIER)
|
||||||
# model.fit(X_scaled, y_scaled, X_min, X_max, ridge=DEFAULT_RIDGE)
|
model.fit(X_scaled, y_scaled, X_min, X_max, ridge=DEFAULT_RIDGE)
|
||||||
# res = model.predict(X_samples, constraint_helper=constraint_helper)
|
res = model.predict(X_samples, constraint_helper=constraint_helper)
|
||||||
|
|
||||||
best_config_idx = np.argmin(res.minl.ravel())
|
best_config_idx = np.argmin(res.minl.ravel())
|
||||||
best_config = res.minl_conf[best_config_idx, :]
|
best_config = res.minl_conf[best_config_idx, :]
|
||||||
|
@ -601,12 +606,13 @@ def load_data_helper(filtered_pipeline_data, workload, task_type):
|
||||||
|
|
||||||
|
|
||||||
@task(base=MapWorkload, name='map_workload')
|
@task(base=MapWorkload, name='map_workload')
|
||||||
def map_workload(target_data):
|
def map_workload(map_workload_input):
|
||||||
|
target_data, algorithm = map_workload_input
|
||||||
# Get the latest version of pipeline data that's been computed so far.
|
# Get the latest version of pipeline data that's been computed so far.
|
||||||
latest_pipeline_run = PipelineRun.objects.get_latest()
|
latest_pipeline_run = PipelineRun.objects.get_latest()
|
||||||
if target_data['bad']:
|
if target_data['bad']:
|
||||||
assert target_data is not None
|
assert target_data is not None
|
||||||
return target_data
|
return target_data, algorithm
|
||||||
assert latest_pipeline_run is not None
|
assert latest_pipeline_run is not None
|
||||||
|
|
||||||
newest_result = Result.objects.get(pk=target_data['newest_result_id'])
|
newest_result = Result.objects.get(pk=target_data['newest_result_id'])
|
||||||
|
@ -753,5 +759,4 @@ def map_workload(target_data):
|
||||||
target_data['mapped_workload'] = (best_workload_id, best_workload_name, best_score)
|
target_data['mapped_workload'] = (best_workload_id, best_workload_name, best_score)
|
||||||
|
|
||||||
target_data['scores'] = scores_info
|
target_data['scores'] = scores_info
|
||||||
return target_data
|
return target_data, algorithm
|
||||||
#
|
|
||||||
|
|
|
@ -536,7 +536,9 @@ def handle_result_files(session, files):
|
||||||
response = chain(train_ddpg.s(result.pk),
|
response = chain(train_ddpg.s(result.pk),
|
||||||
configuration_recommendation_ddpg.s()).apply_async()
|
configuration_recommendation_ddpg.s()).apply_async()
|
||||||
elif session.algorithm == AlgorithmType.DNN:
|
elif session.algorithm == AlgorithmType.DNN:
|
||||||
pass
|
response = chain(aggregate_target_results.s(result.pk, 'dnn'),
|
||||||
|
map_workload.s(),
|
||||||
|
configuration_recommendation.s()).apply_async()
|
||||||
taskmeta_ids = []
|
taskmeta_ids = []
|
||||||
current_task = response
|
current_task = response
|
||||||
while current_task:
|
while current_task:
|
||||||
|
|
Loading…
Reference in New Issue