improve simulator and ddpg

This commit is contained in:
yangdsh 2019-10-28 17:37:08 +00:00 committed by Dana Van Aken
parent 5431154784
commit 9f71d1c8de
4 changed files with 125 additions and 80 deletions

View File

@ -32,6 +32,7 @@ class Actor(nn.Module):
nn.Linear(128, 128),
nn.Tanh(),
nn.Dropout(0.3),
nn.BatchNorm1d(128),
nn.Linear(128, 64),
nn.Tanh(),
@ -99,7 +100,7 @@ class Critic(nn.Module):
class DDPG(object):
def __init__(self, n_states, n_actions, model_name='', alr=0.001, clr=0.001,
gamma=0.9, batch_size=32, tau=0.002, memory_size=100000):
gamma=0.9, batch_size=32, tau=0.002, shift=0, memory_size=100000):
self.n_states = n_states
self.n_actions = n_actions
self.alr = alr
@ -108,6 +109,7 @@ class DDPG(object):
self.batch_size = batch_size
self.gamma = gamma
self.tau = tau
self.shift = shift
self._build_network()
@ -184,7 +186,7 @@ class DDPG(object):
target_next_actions = self.target_actor(batch_next_states).detach()
target_next_value = self.target_critic(batch_next_states, target_next_actions).detach()
current_value = self.critic(batch_states, batch_actions)
next_value = batch_rewards + target_next_value * self.gamma
next_value = batch_rewards + target_next_value * self.gamma + self.shift
# update prioritized memory
if isinstance(self.replay_memory, PrioritizedReplayMemory):

View File

@ -18,6 +18,7 @@ import torch
sys.path.append("../")
from analysis.util import get_analysis_logger # noqa
from analysis.ddpg.ddpg import DDPG # noqa
from analysis.ddpg.ou_process import OUProcess # noqa
from analysis.gp_tf import GPRGD # noqa
from analysis.nn_tf import NeuralNet # noqa
@ -25,10 +26,15 @@ LOG = get_analysis_logger(__name__)
class Environment(object):
def __init__(self, n_knob, n_metric, mode=0):
self.knob_dim = n_knob
self.metric_dim = n_metric
self.mode = mode
def __init__(self, knob_dim, metric_dim, modes=[0], reward_variance=0,
metrics_variance=0.2):
self.knob_dim = knob_dim
self.metric_dim = metric_dim
self.modes = modes
self.mode = np.random.choice(self.modes)
self.counter = 0
self.reward_variance = reward_variance
self.metrics_variance = metrics_variance
def identity_sqrt(self, knob_data):
n1 = self.knob_dim // 4
@ -36,8 +42,15 @@ class Environment(object):
part1 = np.sum(knob_data[0: n1])
part2 = np.sum(np.sqrt(knob_data[n1: n1 + n2]))
reward = np.array([part1 + part2]) / (self.knob_dim // 2)
metric_data = np.zeros(self.metric_dim)
return reward, metric_data
return reward
def threshold(self, knob_data):
n1 = self.knob_dim // 4
n2 = self.knob_dim // 4
part1 = np.sum(knob_data[0: n1] > 0.9)
part2 = np.sum(knob_data[n1: n1 + n2] < 0.1)
reward = np.array([part1 + part2]) / (self.knob_dim // 2)
return reward
def borehole(self, knob_data):
# ref: http://www.sfu.ca/~ssurjano/borehole.html
@ -52,48 +65,64 @@ class Environment(object):
Kw = knob_data[7] * (12045 - 9855) + 9855
frac = 2 * L * Tu / (np.log(r / rw) * rw ** 2 * Kw)
reward = 2 * np.pi * Tu * (Hu - Hl) / (np.log(r / rw) * (1 + frac + Tu / Tl))
return np.array([reward]), np.zeros(self.metric_dim)
reward = 2 * np.pi * Tu * (Hu - Hl) / (np.log(r / rw) * (1 + frac + Tu / Tl)) / 310
return np.array([reward])
def threshold(self, knob_data):
n1 = self.knob_dim // 4
n2 = self.knob_dim // 4
part1 = np.sum(knob_data[0: n1] > 0.9)
part2 = np.sum(knob_data[n1: n1 + n2] < 0.1)
reward = np.array([part1 + part2])
metric_data = np.zeros(self.metric_dim)
return reward, metric_data
def get_metrics(self, mode):
metrics = np.ones(self.metric_dim) * mode
metrics += np.random.rand(self.metric_dim) * self.metrics_variance
return metrics
def simulate_mode(self, knob_data, mode):
if mode == 0:
reward = self.identity_sqrt(knob_data)
elif mode == 1:
reward = self.threshold(knob_data)
elif mode == 2:
reward = np.zeros(1)
for i in range(0, len(knob_data), 8):
reward += self.borehole(knob_data[i: i+8])[0] / len(knob_data) * 8
reward = reward * (1.0 + self.reward_variance * np.random.rand(1)[0])
return reward, self.get_metrics(mode)
def simulate(self, knob_data):
if self.mode == 0:
return self.identity_sqrt(knob_data)
elif self.mode == 1:
return self.threshold(knob_data)
elif self.mode == 2:
return self.borehole(knob_data)
self.counter += 1
k = 1
# every k runs, sample a new workload
if self.counter >= k:
self.counter = 0
self.mode = np.random.choice(self.modes)
return self.simulate_mode(knob_data, self.mode)
def ddpg(env, config, n_loops=1000):
def ddpg(env, config, n_loops=100):
results = []
x_axis = []
gamma = config['gamma']
tau = config['tau']
lr = config['lr']
batch_size = config['batch_size']
a_lr = config['a_lr']
c_lr = config['c_lr']
n_epochs = config['n_epochs']
model_ddpg = DDPG(n_actions=env.knob_dim, n_states=env.metric_dim, gamma=gamma, tau=tau,
clr=lr, alr=lr, batch_size=batch_size)
clr=c_lr, alr=a_lr)
knob_data = np.random.rand(env.knob_dim)
prev_metric_data = np.zeros(env.metric_dim)
for i in range(n_loops):
reward, metric_data = env.simulate(knob_data)
model_ddpg.add_sample(prev_metric_data, knob_data, reward, metric_data)
if i > 0:
model_ddpg.add_sample(prev_metric_data, prev_knob_data, prev_reward, metric_data)
prev_metric_data = metric_data
prev_knob_data = knob_data
prev_reward = reward
if i == 0:
continue
for _ in range(n_epochs):
model_ddpg.update()
results.append(reward)
x_axis.append(i)
prev_metric_data = metric_data
knob_data = model_ddpg.choose_action(prev_metric_data)
x_axis.append(i+1)
LOG.info('loop: %d reward: %f', i, reward[0])
knob_data = model_ddpg.choose_action(metric_data)
return np.array(results), np.array(x_axis)
@ -116,8 +145,10 @@ def dnn(env, config, n_loops=100):
x_axis = []
memory = ReplayMemory()
num_samples = config['num_samples']
ou_process = config['ou_process']
Xmin = np.zeros(env.knob_dim)
Xmax = np.ones(env.knob_dim)
noise = OUProcess(env.knob_dim)
for i in range(n_loops):
X_samples = np.random.rand(num_samples, env.knob_dim)
if i >= 10:
@ -128,23 +159,26 @@ def dnn(env, config, n_loops=100):
X_samples = np.vstack((X_samples, np.array(entry[0])))
model_nn = NeuralNet(n_input=X_samples.shape[1],
batch_size=X_samples.shape[0],
explore_iters=500,
learning_rate=0.01,
explore_iters=100,
noise_scale_begin=0.1,
noise_scale_end=0.0,
debug=False,
debug_interval=100)
if i >= 5:
actions, rewards = memory.get_all()
model_nn.fit(np.array(actions), -np.array(rewards), fit_epochs=500)
res = model_nn.recommend(X_samples, Xmin, Xmax,
explore=500, recommend_epochs=500)
model_nn.fit(np.array(actions), -np.array(rewards), fit_epochs=50)
res = model_nn.recommend(X_samples, Xmin, Xmax, recommend_epochs=10, explore=False)
best_config_idx = np.argmin(res.minl.ravel())
best_config = res.minl_conf[best_config_idx, :]
if ou_process:
best_config += noise.noise()
best_config = best_config.clip(0, 1)
reward, _ = env.simulate(best_config)
memory.push(best_config, reward)
LOG.info('loop: %d reward: %f', i, reward[0])
results.append(reward)
x_axis.append(i)
x_axis.append(i+1)
return np.array(results), np.array(x_axis)
@ -152,16 +186,17 @@ def gprgd(env, config, n_loops=100):
results = []
x_axis = []
memory = ReplayMemory()
num_collections = config['num_collections']
num_samples = config['num_samples']
X_min = np.zeros(env.knob_dim)
X_max = np.ones(env.knob_dim)
for _ in range(5):
for _ in range(num_collections):
action = np.random.rand(env.knob_dim)
reward, _ = env.simulate(action)
memory.push(action, reward)
for i in range(n_loops):
X_samples = np.random.rand(num_samples, env.knob_dim)
if i >= 5:
if i >= 10:
actions, rewards = memory.get_all()
tuples = tuple(zip(actions, rewards))
top10 = heapq.nlargest(10, tuples, key=lambda e: e[1])
@ -171,13 +206,13 @@ def gprgd(env, config, n_loops=100):
X_samples = np.vstack((X_samples, np.array(entry[0]) * 0.97 + 0.01))
model = GPRGD(length_scale=1.0,
magnitude=1.0,
max_train_size=7000,
batch_size=3000,
max_train_size=100,
batch_size=100,
num_threads=4,
learning_rate=0.01,
epsilon=1e-6,
max_iter=500,
sigma_multiplier=3.0,
sigma_multiplier=30.0,
mu_multiplier=1.0)
actions, rewards = memory.get_all()
@ -193,62 +228,69 @@ def gprgd(env, config, n_loops=100):
return np.array(results), np.array(x_axis)
def plotlines(x_axis, results, labels, title, path):
def plotlines(xs, results, labels, title, path):
if plt:
for result, label in zip(results, labels):
plt.plot(x_axis, result, label=label)
plt.legend()
plt.xlabel("loops")
plt.ylabel("rewards")
plt.title(title)
figsize = 13, 10
figure, ax = plt.subplots(figsize=figsize)
lines = []
N = 20
weights = np.ones(N)
for x_axis, result, label in zip(xs, results, labels):
result = np.convolve(weights/weights.sum(), result.flatten())[N-1:-N+1]
lines.append(plt.plot(x_axis[:-N+1], result, label=label, lw=4)[0])
plt.legend(handles=lines, fontsize=30)
plt.title(title, fontsize=25)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
ax.set_xlabel("loops", fontsize=30)
ax.set_ylabel("rewards", fontsize=30)
plt.savefig(path)
plt.clf()
def run(tuners, configs, labels, knob_dim, metric_dim, mode, n_loops, n_repeats):
def run(tuners, configs, labels, title, env, n_loops, n_repeats):
if not plt:
LOG.info("Cannot import matplotlib. Will write results to files instead of figures.")
random.seed(0)
np.random.seed(0)
np.random.seed(1)
torch.manual_seed(0)
env = Environment(knob_dim, metric_dim, mode=mode)
results = []
for i in range(n_repeats):
xs = []
for j, _ in enumerate(tuners):
for i in range(n_repeats[j]):
result, x_axis = tuners[j](env, configs[j], n_loops=n_loops)
if i is 0:
results.append(result / n_repeats)
results.append(result / n_repeats[j])
xs.append(x_axis)
else:
results[j] += result / n_repeats
title = "mode_{}_knob_{}".format(mode, knob_dim)
results[j] += result / n_repeats[j]
if plt:
if not os.path.exists("figures"):
os.mkdir("figures")
filename = "figures/{}.pdf".format(title)
plotlines(x_axis, results, labels, title, filename)
if not os.path.exists("simulation_figures"):
os.mkdir("simulation_figures")
filename = "simulation_figures/{}.pdf".format(title)
plotlines(xs, results, labels, title, filename)
if not os.path.exists("simulation_results"):
os.mkdir("simulation_results")
for j in range(len(tuners)):
with open(title + '_' + labels[j] + '.csv', 'w') as f:
for i, result in zip(x_axis, results[j]):
with open("simulation_results/" + title + '_' + labels[j] + '.csv', 'w') as f:
for i, result in zip(xs[j], results[j]):
f.write(str(i) + ',' + str(result[0]) + '\n')
def main():
knob_dim = 192
metric_dim = 60
mode = 0
n_loops = 2
n_repeats = 1
configs = [{'gamma': 0., 'tau': 0.002, 'lr': 0.001, 'batch_size': 32, 'n_epochs': 30},
{'gamma': 0.99, 'tau': 0.002, 'lr': 0.001, 'batch_size': 32, 'n_epochs': 30},
{'num_samples': 30},
{'num_samples': 30}]
tuners = [ddpg, ddpg, dnn, gprgd]
labels = [tuner.__name__ for tuner in tuners]
labels[0] += '_gamma_0'
labels[1] += '_gamma_99'
run(tuners, configs, labels, knob_dim, metric_dim, mode, n_loops, n_repeats)
env = Environment(knob_dim=192, metric_dim=60, modes=[0, 1], reward_variance=0.05)
n_loops = 2000
configs = [{'gamma': 0, 'tau': 0.002, 'a_lr': 0.01, 'c_lr': 0.01, 'n_epochs': 1},
{'gamma': 0, 'tau': 0.002, 'a_lr': 0.01, 'c_lr': 0.001, 'n_epochs': 1},
{'gamma': 0., 'tau': 0.002, 'a_lr': 0.001, 'c_lr': 0.001, 'n_epochs': 1},
# {'num_samples': 100, 'ou_process': False},
]
tuners = [ddpg, ddpg, ddpg]
labels = ['1', '2', '3']
title = 'varing_workloads'
n_repeats = [3, 3, 3]
run(tuners, configs, labels, title, env, n_loops, n_repeats)
if __name__ == '__main__':

View File

@ -80,4 +80,4 @@ DDPG_BATCH_SIZE = 32
ACTOR_LEARNING_RATE = 0.01
# Learning rate of critic network
CRITIC_LEARNING_RATE = 0.01
CRITIC_LEARNING_RATE = 0.001

View File

@ -338,6 +338,7 @@ def train_ddpg(result_id):
if session.ddpg_reply_memory:
ddpg.replay_memory.set(session.ddpg_reply_memory)
ddpg.add_sample(normalized_metric_data, knob_data, reward, normalized_metric_data)
for _ in range(25):
ddpg.update()
session.ddpg_actor_model, session.ddpg_critic_model = ddpg.get_model()
session.ddpg_reply_memory = ddpg.replay_memory.get()