test for dnn
This commit is contained in:
parent
0da1b724cc
commit
a5f393cdc1
|
@ -0,0 +1,38 @@
|
||||||
|
#
|
||||||
|
# OtterTune - test_nn.py
|
||||||
|
#
|
||||||
|
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
||||||
|
#
|
||||||
|
import unittest
|
||||||
|
from tensorflow import set_random_seed
|
||||||
|
from sklearn import datasets
|
||||||
|
from analysis.nn_tf import NeuralNet
|
||||||
|
|
||||||
|
|
||||||
|
# test neural network
|
||||||
|
class TestNN(unittest.TestCase):
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def setUpClass(cls):
|
||||||
|
super(TestNN, cls).setUpClass()
|
||||||
|
boston = datasets.load_boston()
|
||||||
|
data = boston['data']
|
||||||
|
X_train = data[0:500]
|
||||||
|
X_test = data[500:]
|
||||||
|
y_train = boston['target'][0:500].reshape(500, 1)
|
||||||
|
set_random_seed(1)
|
||||||
|
cls.model = NeuralNet(n_input=X_test.shape[1],
|
||||||
|
batch_size=X_test.shape[0])
|
||||||
|
cls.model.fit(X_train, y_train)
|
||||||
|
cls.nn_result = cls.model.predict(X_test)
|
||||||
|
cls.nn_recommend = cls.model.recommend(X_test)
|
||||||
|
|
||||||
|
def test_nn_ypreds(self):
|
||||||
|
ypreds_round = ['%.3f' % x[0] for x in self.nn_result]
|
||||||
|
expected_ypreds = ['20.503', '22.158', '22.158', '25.692', '24.536', '23.637']
|
||||||
|
self.assertEqual(ypreds_round, expected_ypreds)
|
||||||
|
|
||||||
|
def test_nn_yrecommend(self):
|
||||||
|
recommends_round = ['%.3f' % x[0] for x in self.nn_recommend.minl]
|
||||||
|
expected_recommends = ['14.229', '22.158', '22.158', '23.591', '23.591', '23.593']
|
||||||
|
self.assertEqual(recommends_round, expected_recommends)
|
Loading…
Reference in New Issue