fix typos
This commit is contained in:
parent
e1b97bca9b
commit
be955cc812
|
@ -45,12 +45,12 @@ class NeuralNet(object):
|
||||||
self.n_input = n_input
|
self.n_input = n_input
|
||||||
self.debug = debug
|
self.debug = debug
|
||||||
self.debug_interval = debug_interval
|
self.debug_interval = debug_interval
|
||||||
self.learning_rate = 0.01
|
self.learning_rate = learning_rate
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.explore_iters = explore_iters
|
self.explore_iters = explore_iters
|
||||||
self.noise_scale_begin = noise_scale_begin
|
self.noise_scale_begin = noise_scale_begin
|
||||||
self.noise_scale_end = noise_scale_end
|
self.noise_scale_end = noise_scale_end
|
||||||
self.optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
|
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
|
||||||
# input X is placeholder, weights are variables.
|
# input X is placeholder, weights are variables.
|
||||||
self.model = keras.Sequential([
|
self.model = keras.Sequential([
|
||||||
layers.Dense(64, activation=tf.nn.relu, input_shape=[n_input]),
|
layers.Dense(64, activation=tf.nn.relu, input_shape=[n_input]),
|
||||||
|
@ -93,7 +93,7 @@ class NeuralNet(object):
|
||||||
l1_ = tf.nn.relu(tf.add(tf.matmul(x_, w1_), b1_))
|
l1_ = tf.nn.relu(tf.add(tf.matmul(x_, w1_), b1_))
|
||||||
l2_ = tf.nn.relu(tf.add(tf.matmul(l1_, w2_), b2_))
|
l2_ = tf.nn.relu(tf.add(tf.matmul(l1_, w2_), b2_))
|
||||||
y_ = tf.add(tf.matmul(l2_, w3_), b3_)
|
y_ = tf.add(tf.matmul(l2_, w3_), b3_)
|
||||||
optimizer_ = tf.train.AdamOptimizer(learning_rate=0.01)
|
optimizer_ = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
|
||||||
train_ = optimizer_.minimize(y_)
|
train_ = optimizer_.minimize(y_)
|
||||||
|
|
||||||
self.vars['x_'] = x_
|
self.vars['x_'] = x_
|
||||||
|
@ -155,8 +155,8 @@ class NeuralNet(object):
|
||||||
w3 = self.add_noise(w3)
|
w3 = self.add_noise(w3)
|
||||||
b3 = self.add_noise(b3)
|
b3 = self.add_noise(b3)
|
||||||
|
|
||||||
if self.debug:
|
|
||||||
y_predict = self.predict(X_start)
|
y_predict = self.predict(X_start)
|
||||||
|
if self.debug:
|
||||||
LOG.info("Recommend phase, y prediction: min %f, max %f, mean %f",
|
LOG.info("Recommend phase, y prediction: min %f, max %f, mean %f",
|
||||||
np.min(y_predict), np.max(y_predict), np.mean(y_predict))
|
np.min(y_predict), np.max(y_predict), np.mean(y_predict))
|
||||||
|
|
||||||
|
@ -204,7 +204,7 @@ class NeuralNet(object):
|
||||||
|
|
||||||
if self.debug:
|
if self.debug:
|
||||||
LOG.info("Recommend phase, epoch %d, y after gradient descent: \
|
LOG.info("Recommend phase, epoch %d, y after gradient descent: \
|
||||||
min %f, max %f, mean %f", recommend_epochs, np.mean(y_recommend),
|
min %f, max %f, mean %f", recommend_epochs, np.min(y_recommend),
|
||||||
np.max(y_recommend), np.mean(y_recommend))
|
np.max(y_recommend), np.mean(y_recommend))
|
||||||
|
|
||||||
self.recommend_iters += 1
|
self.recommend_iters += 1
|
||||||
|
|
Loading…
Reference in New Issue