move dnn parameters to constant file
This commit is contained in:
parent
82a7d859c2
commit
c37ef9c072
|
@ -42,20 +42,37 @@ NUM_THREADS = 4
|
|||
# the maximum iterations of gradient descent
|
||||
MAX_ITER = 500
|
||||
|
||||
DEFAULT_LEARNING_RATE = 0.01
|
||||
|
||||
# ---GRADIENT DESCENT FOR GPR---
|
||||
# a small bias when using training data points as starting points.
|
||||
GPR_EPS = 0.001
|
||||
|
||||
DEFAULT_RIDGE = 0.01
|
||||
|
||||
DEFAULT_LEARNING_RATE = 0.01
|
||||
|
||||
DEFAULT_EPSILON = 1e-6
|
||||
|
||||
DEFAULT_SIGMA_MULTIPLIER = 3.0
|
||||
|
||||
DEFAULT_MU_MULTIPLIER = 1.0
|
||||
|
||||
# ---CONSTRAINTS CONSTANTS---
|
||||
# ---GRADIENT DESCENT FOR DNN---
|
||||
DNN_TRAIN_ITER = 500
|
||||
|
||||
DNN_EXPLORE = False
|
||||
|
||||
DNN_EXPLORE_ITER = 500
|
||||
|
||||
# noise scale for paramater space exploration
|
||||
DNN_NOISE_SCALE_BEGIN = 0.1
|
||||
|
||||
DNN_NOISE_SCALE_END = 0.0
|
||||
|
||||
DNN_DEBUG = True
|
||||
|
||||
DNN_DEBUG_INTERVAL = 100
|
||||
|
||||
# ---DDPG CONSTRAINTS CONSTANTS---
|
||||
# Batch size in DDPG model
|
||||
DDPG_BATCH_SIZE = 32
|
||||
|
||||
|
|
|
@ -31,7 +31,10 @@ from website.settings import (DEFAULT_LENGTH_SCALE, DEFAULT_MAGNITUDE,
|
|||
DEFAULT_EPSILON, MAX_ITER, GPR_EPS,
|
||||
DEFAULT_SIGMA_MULTIPLIER, DEFAULT_MU_MULTIPLIER,
|
||||
DDPG_BATCH_SIZE, ACTOR_LEARNING_RATE,
|
||||
CRITIC_LEARNING_RATE, GAMMA, TAU)
|
||||
CRITIC_LEARNING_RATE, GAMMA, TAU,
|
||||
DNN_TRAIN_ITER, DNN_EXPLORE, DNN_EXPLORE_ITER,
|
||||
DNN_NOISE_SCALE_BEGIN, DNN_NOISE_SCALE_END,
|
||||
DNN_DEBUG, DNN_DEBUG_INTERVAL)
|
||||
|
||||
from website.settings import INIT_FLIP_PROB, FLIP_PROB_DECAY
|
||||
from website.settings import MODEL_DIR
|
||||
|
@ -553,12 +556,14 @@ def configuration_recommendation(recommendation_input):
|
|||
model_nn = NeuralNet(weights_file=full_path,
|
||||
n_input=X_samples.shape[1],
|
||||
batch_size=X_samples.shape[0],
|
||||
explore_iters=500,
|
||||
noise_scale_begin=0.1,
|
||||
noise_scale_end=0,
|
||||
debug=True)
|
||||
model_nn.fit(X_scaled, y_scaled)
|
||||
res = model_nn.recommend(X_samples, X_min, X_max, explore=True)
|
||||
explore_iters=DNN_EXPLORE_ITER,
|
||||
noise_scale_begin=DNN_NOISE_SCALE_BEGIN,
|
||||
noise_scale_end=DNN_NOISE_SCALE_END,
|
||||
debug=DNN_DEBUG,
|
||||
debug_interval=DNN_DEBUG_INTERVAL)
|
||||
model_nn.fit(X_scaled, y_scaled, fit_epochs=DNN_TRAIN_ITER)
|
||||
res = model_nn.recommend(X_samples, X_min, X_max,
|
||||
explore=DNN_EXPLORE, recommend_epochs=MAX_ITER)
|
||||
elif algorithm == 'gpr':
|
||||
# default gpr model
|
||||
model = GPRGD(length_scale=DEFAULT_LENGTH_SCALE,
|
||||
|
|
|
@ -539,11 +539,13 @@ def handle_result_files(session, files):
|
|||
response = chain(aggregate_target_results.s(result.pk, 'dnn'),
|
||||
map_workload.s(),
|
||||
configuration_recommendation.s()).apply_async()
|
||||
|
||||
taskmeta_ids = []
|
||||
current_task = response
|
||||
while current_task:
|
||||
taskmeta_ids.append(current_task.id)
|
||||
taskmeta_ids.insert(0, current_task.id)
|
||||
current_task = current_task.parent
|
||||
|
||||
result.task_ids = ','.join(taskmeta_ids)
|
||||
result.save()
|
||||
return HttpResponse("Result stored successfully! Running tuner...(status={}) Result ID:{} "
|
||||
|
|
Loading…
Reference in New Issue