fix bugs
This commit is contained in:
parent
24194293bc
commit
d3c7bb661d
|
@ -25,8 +25,7 @@ from analysis.gpr import ucb
|
|||
from analysis.gpr.optimize import tf_optimize
|
||||
from analysis.preprocessing import Bin, DummyEncoder
|
||||
from analysis.constraints import ParamConstraintHelper
|
||||
from website.models import (PipelineData, PipelineRun, Result, Workload, KnobCatalog, SessionKnob,
|
||||
MetricCatalog)
|
||||
from website.models import PipelineData, PipelineRun, Result, Workload, SessionKnob, MetricCatalog
|
||||
from website import db
|
||||
from website.types import PipelineTaskType, AlgorithmType, VarType
|
||||
from website.utils import DataUtil, JSONUtil
|
||||
|
@ -336,7 +335,7 @@ def train_ddpg(result_id):
|
|||
prev_result_id = result_id
|
||||
else:
|
||||
base_result_id = session_results[0].pk
|
||||
prev_result_id = session_results[len(session_results)-1].pk
|
||||
prev_result_id = session_results[len(session_results) - 1].pk
|
||||
base_result = Result.objects.filter(pk=base_result_id)
|
||||
prev_result = Result.objects.filter(pk=prev_result_id)
|
||||
|
||||
|
@ -381,7 +380,7 @@ def train_ddpg(result_id):
|
|||
result.session.dbms.pk, result.session.target_objective)
|
||||
|
||||
# Calculate the reward
|
||||
if DDPG_SIMPLE_REWARD:
|
||||
if params['DDPG_SIMPLE_REWARD']:
|
||||
objective = objective / base_objective
|
||||
if metric_meta[target_objective].improvement == '(less is better)':
|
||||
reward = -objective
|
||||
|
@ -652,7 +651,8 @@ def combine_workload(target_data):
|
|||
X_min[i] = col_min
|
||||
X_max[i] = col_max
|
||||
|
||||
return X_columnlabels, X_scaler, X_scaled, y_scaled, X_max, X_min
|
||||
return X_columnlabels, X_scaler, X_scaled, y_scaled, X_max, X_min,\
|
||||
dummy_encoder, constraint_helper
|
||||
|
||||
|
||||
@task(base=ConfigurationRecommendation, name='configuration_recommendation')
|
||||
|
@ -661,7 +661,7 @@ def configuration_recommendation(recommendation_input):
|
|||
LOG.info('configuration_recommendation called')
|
||||
newest_result = Result.objects.get(pk=target_data['newest_result_id'])
|
||||
session = newest_result.session
|
||||
params = session.hyper_parameters
|
||||
params = JSONUtil.loads(session.hyper_parameters)
|
||||
|
||||
if target_data['bad'] is True:
|
||||
target_data_res = create_and_save_recommendation(
|
||||
|
@ -672,9 +672,8 @@ def configuration_recommendation(recommendation_input):
|
|||
AlgorithmType.name(algorithm), JSONUtil.dumps(target_data, pprint=True))
|
||||
return target_data_res
|
||||
|
||||
latest_pipeline_run = PipelineRun.objects.get(pk=target_data['pipeline_run'])
|
||||
|
||||
X_columnlabels, X_scaler, X_scaled, y_scaled, X_max, X_min = combine_workload(target_data)
|
||||
X_columnlabels, X_scaler, X_scaled, y_scaled, X_max, X_min,\
|
||||
dummy_encoder, constraint_helper = combine_workload(target_data)
|
||||
|
||||
# FIXME: we should generate more samples and use a smarter sampling
|
||||
# technique
|
||||
|
@ -698,9 +697,9 @@ def configuration_recommendation(recommendation_input):
|
|||
# make sure it is within the range.
|
||||
dist = sum(np.square(X_max - X_scaled[item[1]]))
|
||||
if dist < 0.001:
|
||||
X_samples = np.vstack((X_samples, X_scaled[item[1]] - abs(GPR_EPS)))
|
||||
X_samples = np.vstack((X_samples, X_scaled[item[1]] - abs(params['GPR_EPS'])))
|
||||
else:
|
||||
X_samples = np.vstack((X_samples, X_scaled[item[1]] + abs(GPR_EPS)))
|
||||
X_samples = np.vstack((X_samples, X_scaled[item[1]] + abs(params['GPR_EPS'])))
|
||||
i = i + 1
|
||||
except queue.Empty:
|
||||
break
|
||||
|
|
Loading…
Reference in New Issue