import Dana's new gpr model
This commit is contained in:
parent
8bb3de85e7
commit
e86fce59d9
|
@ -0,0 +1,271 @@
|
|||
#
|
||||
# OtterTune - analysis/gpr_models.py
|
||||
#
|
||||
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
||||
#
|
||||
# Author: Dana Van Aken
|
||||
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
|
||||
import gpflow
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from .gprc import GPRC
|
||||
|
||||
|
||||
class BaseModel(object):
|
||||
|
||||
# Min/max bounds for the kernel lengthscales
|
||||
_LENGTHSCALE_BOUNDS = (0.1, 10.)
|
||||
|
||||
# Keys for each kernel's hyperparameters
|
||||
_KERNEL_HP_KEYS = []
|
||||
|
||||
# The key for the likelihood parameter
|
||||
_LIKELIHOOD_HP_KEY = 'GPRC/likelihood/variance'
|
||||
|
||||
def __init__(self, X, y, hyperparameters=None, optimize_hyperparameters=False,
|
||||
learning_rate=0.001, maxiter=5000, **kwargs):
|
||||
# Store model kwargs
|
||||
self._model_kwargs = {
|
||||
'hyperparameters': hyperparameters,
|
||||
'optimize_hyperparameters': optimize_hyperparameters,
|
||||
'learning_rate': learning_rate,
|
||||
'maxiter': maxiter,
|
||||
}
|
||||
|
||||
# Store kernel kwargs
|
||||
kernel_kwargs = self._get_kernel_kwargs(X_dim=X.shape[1], **kwargs)
|
||||
if hyperparameters is not None:
|
||||
self._assign_kernel_hyperparams(hyperparameters, kernel_kwargs)
|
||||
self._kernel_kwargs = copy.deepcopy(kernel_kwargs)
|
||||
|
||||
# Build the kernels and the model
|
||||
with gpflow.defer_build():
|
||||
k = self._build_kernel(kernel_kwargs, optimize_hyperparameters=optimize_hyperparameters, **kwargs)
|
||||
m = GPRC(X, y, kern=k)
|
||||
if hyperparameters is not None and self._LIKELIHOOD_HP_KEY in hyperparameters:
|
||||
m.likelihood.variance = hyperparameters[self._LIKELIHOOD_HP_KEY]
|
||||
m.compile()
|
||||
|
||||
# If enabled, optimize the hyperparameters
|
||||
if optimize_hyperparameters:
|
||||
opt = gpflow.train.AdamOptimizer(learning_rate)
|
||||
opt.minimize(m, maxiter=maxiter)
|
||||
self._model = m
|
||||
|
||||
def _get_kernel_kwargs(self, **kwargs):
|
||||
return []
|
||||
|
||||
def _build_kernel(self, kernel_kwargs, **kwargs):
|
||||
return None
|
||||
|
||||
def get_hyperparameters(self):
|
||||
return {k: float(v) if v.ndim == 0 else v.tolist()
|
||||
for k, v in self._model.read_values().items()}
|
||||
|
||||
def get_model_parameters(self):
|
||||
return {
|
||||
'model_params': copy.deepcopy(self._model_kwargs),
|
||||
'kernel_params': copy.deepcopy(self._kernel_kwargs)
|
||||
}
|
||||
|
||||
def _assign_kernel_hyperparams(self, hyperparams, kernel_kwargs):
|
||||
for i, kernel_keys in enumerate(self._KERNEL_HP_KEYS):
|
||||
for key in kernel_keys:
|
||||
if key in hyperparams:
|
||||
argname = key.rsplit('/', 1)[-1]
|
||||
kernel_kwargs[i][argname] = hyperparams[key]
|
||||
|
||||
@staticmethod
|
||||
def load_hyperparameters(path, hp_idx=0):
|
||||
with open(path, 'r') as f:
|
||||
hyperparams = json.load(f)['hyperparameters']
|
||||
if isinstance(hyperparams, list):
|
||||
assert hp_idx >= 0, 'hp_idx: {} (expected >= 0)'.format(hp_idx)
|
||||
if hp_idx >= len(hyperparams):
|
||||
hp_idx = -1
|
||||
hyperparams = hyperparams[hp_idx]
|
||||
return hyperparams
|
||||
|
||||
|
||||
class BasicGP(BaseModel):
|
||||
|
||||
_KERNEL_HP_KEYS = [
|
||||
[
|
||||
'GPRC/kern/kernels/0/variance',
|
||||
'GPRC/kern/kernels/0/lengthscales',
|
||||
],
|
||||
[
|
||||
'GPRC/kern/kernels/1/variance',
|
||||
],
|
||||
]
|
||||
|
||||
def _get_kernel_kwargs(self, **kwargs):
|
||||
X_dim = kwargs.pop('X_dim')
|
||||
return [
|
||||
{
|
||||
'input_dim': X_dim,
|
||||
'ARD': True
|
||||
},
|
||||
{
|
||||
'input_dim': X_dim,
|
||||
},
|
||||
]
|
||||
|
||||
def _build_kernel(self, kernel_kwargs, **kwargs):
|
||||
k0 = gpflow.kernels.Exponential(**kernel_kwargs[0])
|
||||
k1 = gpflow.kernels.White(**kernel_kwargs[1])
|
||||
if kwargs.pop('optimize_hyperparameters'):
|
||||
k0.lengthscales.transform = gpflow.transforms.Logistic(
|
||||
*self._LENGTHSCALE_BOUNDS)
|
||||
k = k0 + k1
|
||||
return k
|
||||
|
||||
|
||||
class ContextualGP(BaseModel):
|
||||
|
||||
_KERNEL_HP_KEYS = [
|
||||
[
|
||||
'GPRC/kern/kernels/0/kernels/0/variance',
|
||||
'GPRC/kern/kernels/0/kernels/0/lengthscales',
|
||||
],
|
||||
[
|
||||
'GPRC/kern/kernels/0/kernels/1/variance',
|
||||
'GPRC/kern/kernels/0/kernels/1/lengthscales',
|
||||
],
|
||||
[
|
||||
'GPRC/kern/kernels/1/variance',
|
||||
]
|
||||
]
|
||||
|
||||
def _get_kernel_kwargs(self, **kwargs):
|
||||
k0_active_dims = kwargs.pop('k0_active_dims')
|
||||
k1_active_dims = kwargs.pop('k1_active_dims')
|
||||
return [
|
||||
{
|
||||
'input_dim': len(k0_active_dims),
|
||||
'active_dims': k0_active_dims,
|
||||
'ARD': True,
|
||||
},
|
||||
{
|
||||
'input_dim': len(k1_active_dims),
|
||||
'active_dims': k1_active_dims,
|
||||
'ARD': True,
|
||||
},
|
||||
{
|
||||
'input_dim': kwargs.pop('X_dim'),
|
||||
}
|
||||
]
|
||||
|
||||
def _build_kernel(self, kernel_kwargs, **kwargs):
|
||||
k0 = gpflow.kernels.Exponential(**kernel_kwargs[0])
|
||||
k1 = gpflow.kernels.Exponential(**kernel_kwargs[1])
|
||||
k2 = gpflow.kernels.White(**kernel_kwargs[2])
|
||||
if kwargs['optimize_hyperparameters']:
|
||||
k0.lengthscales.transform = gpflow.transforms.Logistic(
|
||||
*self._LENGTHSCALE_BOUNDS)
|
||||
k1.lengthscales.transform = gpflow.transforms.Logistic(
|
||||
*self._LENGTHSCALE_BOUNDS)
|
||||
k = k0 * k1 + k2
|
||||
return k
|
||||
|
||||
|
||||
class ContextualGP_Alt0(ContextualGP):
|
||||
|
||||
def __init__(self, X, y, hyperparameters=None, optimize_hyperparameters=False,
|
||||
learning_rate=0.001, maxiter=5000, **kwargs):
|
||||
self._context_lengthscale_const = kwargs.pop('context_lengthscale_const', 9.0)
|
||||
super(ContextualGP_Alt0, self).__init__(
|
||||
X, y, hyperparameters=hyperparameters,
|
||||
optimize_hyperparameters=optimize_hyperparameters,
|
||||
learning_rate=learning_rate, maxiter=maxiter, **kwargs)
|
||||
|
||||
def _build_kernel(self, kernel_kwargs, **kwargs):
|
||||
kernel_kwargs[1]['lengthscales'] = np.ones((kernel_kwargs[1]['input_dim'],)) * \
|
||||
self._context_lengthscale_const
|
||||
|
||||
k0 = gpflow.kernels.Exponential(**kernel_kwargs[0])
|
||||
k1 = gpflow.kernels.Exponential(**kernel_kwargs[1])
|
||||
k1.lengthscales.trainable = False
|
||||
k2 = gpflow.kernels.White(**kernel_kwargs[2])
|
||||
if kwargs['optimize_hyperparameters']:
|
||||
k0.lengthscales.transform = gpflow.transforms.Logistic(
|
||||
*self._LENGTHSCALE_BOUNDS)
|
||||
k = k0 * k1 + k2
|
||||
return k
|
||||
|
||||
|
||||
class ContextualGP_Alt1(ContextualGP):
|
||||
|
||||
def __init__(self, X, y, hyperparameters=None, optimize_hyperparameters=False,
|
||||
learning_rate=0.001, maxiter=5000, **kwargs):
|
||||
self._hyperparams_path = kwargs.pop('hyperparameters_path')
|
||||
self._hyperparams_idx = kwargs.pop('hyperparameters_idx', 0)
|
||||
self._context_only = kwargs.pop('context_only', True)
|
||||
super(ContextualGP_Alt1, self).__init__(
|
||||
X, y, hyperparameters=hyperparameters,
|
||||
optimize_hyperparameters=optimize_hyperparameters,
|
||||
learning_rate=learning_rate, maxiter=maxiter, **kwargs)
|
||||
|
||||
def _build_kernel(self, kernel_kwargs, **kwargs):
|
||||
hyperparams = self.load_hyperparameters(self._hyperparams_path,
|
||||
self._hyperparams_idx)
|
||||
if not self._context_only:
|
||||
kernel_kwargs[0]['lengthscales'] = np.array(
|
||||
hyperparams['GPRC/kern/kernels/0/kernels/0/lengthscales'])
|
||||
kernel_kwargs[1]['lengthscales'] = np.array(
|
||||
hyperparams['GPRC/kern/kernels/0/kernels/1/lengthscales'])
|
||||
|
||||
k0 = gpflow.kernels.Exponential(**kernel_kwargs[0])
|
||||
k1 = gpflow.kernels.Exponential(**kernel_kwargs[1])
|
||||
k2 = gpflow.kernels.White(**kernel_kwargs[2])
|
||||
|
||||
if not self._context_only:
|
||||
k0.lengthscales.trainable = False
|
||||
k1.lengthscales.trainable = False
|
||||
|
||||
if self._context_only and kwargs['optimize_hyperparameters']:
|
||||
k0.lengthscales.transform = gpflow.transforms.Logistic(
|
||||
*self._LENGTHSCALE_BOUNDS)
|
||||
k = k0 * k1 + k2
|
||||
return k
|
||||
|
||||
|
||||
class AdditiveContextualGP(ContextualGP):
|
||||
|
||||
def _build_kernel(self, kernel_kwargs, **kwargs):
|
||||
k0 = gpflow.kernels.Exponential(**kernel_kwargs[0])
|
||||
k1 = gpflow.kernels.Exponential(**kernel_kwargs[1])
|
||||
k2 = gpflow.kernels.White(**kernel_kwargs[2])
|
||||
if kwargs['optimize_hyperparameters']:
|
||||
k0.lengthscales.transform = gpflow.transforms.Logistic(
|
||||
*self._LENGTHSCALE_BOUNDS)
|
||||
k1.lengthscales.transform = gpflow.transforms.Logistic(
|
||||
*self._LENGTHSCALE_BOUNDS)
|
||||
k = k0 + k1 + k2
|
||||
return k
|
||||
|
||||
|
||||
_MODEL_MAP = {
|
||||
'BasicGP': BasicGP,
|
||||
'ContextualGP': ContextualGP,
|
||||
'ContextualGP_Alt0': ContextualGP_Alt0,
|
||||
'ContextualGP_Alt1': ContextualGP_Alt1,
|
||||
'AdditiveContextualGP': AdditiveContextualGP,
|
||||
}
|
||||
|
||||
|
||||
def create_model(model_name, **kwargs):
|
||||
# Update tensorflow session settings to enable GPU sharing
|
||||
gpflow.settings.session.update(gpu_options=tf.GPUOptions(allow_growth=True))
|
||||
check_valid(model_name)
|
||||
return _MODEL_MAP[model_name](**kwargs)
|
||||
|
||||
|
||||
def check_valid(model_name):
|
||||
if model_name not in _MODEL_MAP:
|
||||
raise ValueError('Invalid GPR model name: {}'.format(model_name))
|
|
@ -0,0 +1,48 @@
|
|||
#
|
||||
# OtterTune - analysis/gprc.py
|
||||
#
|
||||
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
||||
#
|
||||
# Author: Dana Van Aken
|
||||
|
||||
from __future__ import absolute_import
|
||||
|
||||
import tensorflow as tf
|
||||
from gpflow import settings
|
||||
from gpflow.decors import autoflow, name_scope, params_as_tensors
|
||||
from gpflow.models import GPR
|
||||
|
||||
|
||||
class GPRC(GPR):
|
||||
|
||||
def __init__(self, X, Y, kern, mean_function=None, **kwargs):
|
||||
super(GPRC, self).__init__(X, Y, kern, mean_function, **kwargs)
|
||||
self.cholesky = None
|
||||
self.alpha = None
|
||||
|
||||
@autoflow()
|
||||
def _compute_cache(self):
|
||||
K = self.kern.K(self.X) + tf.eye(tf.shape(self.X)[0], dtype=settings.float_type) * self.likelihood.variance
|
||||
L = tf.cholesky(K, name='gp_cholesky')
|
||||
V = tf.matrix_triangular_solve(L, self.Y - self.mean_function(self.X), name='gp_alpha')
|
||||
return L, V
|
||||
|
||||
def update_cache(self):
|
||||
self.cholesky, self.alpha = self._compute_cache()
|
||||
|
||||
@name_scope('predict')
|
||||
@params_as_tensors
|
||||
def _build_predict(self, Xnew, full_cov=False):
|
||||
if self.cholesky is None:
|
||||
self.update_cache()
|
||||
Kx = self.kern.K(self.X, Xnew)
|
||||
A = tf.matrix_triangular_solve(self.cholesky, Kx, lower=True)
|
||||
fmean = tf.matmul(A, self.alpha, transpose_a=True) + self.mean_function(Xnew)
|
||||
if full_cov:
|
||||
fvar = self.kern.K(Xnew) - tf.matmul(A, A, transpose_a=True)
|
||||
shape = tf.stack([1, 1, tf.shape(self.Y)[1]])
|
||||
fvar = tf.tile(tf.expand_dims(fvar, 2), shape)
|
||||
else:
|
||||
fvar = self.kern.Kdiag(Xnew) - tf.reduce_sum(tf.square(A), 0)
|
||||
fvar = tf.tile(tf.reshape(fvar, (-1, 1)), [1, tf.shape(self.Y)[1]])
|
||||
return fmean, fvar
|
|
@ -0,0 +1,64 @@
|
|||
#
|
||||
# OtterTune - analysis/optimize.py
|
||||
#
|
||||
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
||||
#
|
||||
# Author: Dana Van Aken
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from gpflow import settings
|
||||
from sklearn.utils import assert_all_finite, check_array
|
||||
from sklearn.utils.validation import FLOAT_DTYPES
|
||||
|
||||
from analysis.util import get_analysis_logger
|
||||
|
||||
LOG = get_analysis_logger(__name__)
|
||||
|
||||
|
||||
def tf_optimize(model, Xnew_arr, learning_rate=0.01, maxiter=100, ucb_beta=3.,
|
||||
active_dims=None, bounds=None):
|
||||
Xnew_arr = check_array(Xnew_arr, copy=False, warn_on_dtype=True, dtype=FLOAT_DTYPES)
|
||||
|
||||
Xnew = tf.Variable(Xnew_arr, name='Xnew', dtype=settings.float_type)
|
||||
if bounds is None:
|
||||
lower_bound = tf.constant(-np.infty, dtype=settings.float_type)
|
||||
upper_bound = tf.constant(np.infty, dtype=settings.float_type)
|
||||
else:
|
||||
lower_bound = tf.constant(bounds[0], dtype=settings.float_type)
|
||||
upper_bound = tf.constant(bounds[1], dtype=settings.float_type)
|
||||
Xnew_bounded = tf.minimum(tf.maximum(Xnew, lower_bound), upper_bound)
|
||||
|
||||
if active_dims:
|
||||
indices = []
|
||||
updates = []
|
||||
n_rows = Xnew_arr.shape[0]
|
||||
for c in active_dims:
|
||||
for r in range(n_rows):
|
||||
indices.append([r, c])
|
||||
updates.append(Xnew_bounded[r, c])
|
||||
part_X = tf.scatter_nd(indices, updates, Xnew_arr.shape)
|
||||
Xin = part_X + tf.stop_gradient(-part_X + Xnew_bounded)
|
||||
else:
|
||||
Xin = Xnew_bounded
|
||||
|
||||
beta_t = tf.constant(ucb_beta, name='ucb_beta', dtype=settings.float_type)
|
||||
y_mean_var = model.likelihood.predict_mean_and_var(*model._build_predict(Xin))
|
||||
loss = tf.subtract(y_mean_var[0], tf.multiply(beta_t, y_mean_var[1]), name='loss_fn')
|
||||
opt = tf.train.AdamOptimizer(learning_rate)
|
||||
train_op = opt.minimize(loss)
|
||||
variables = opt.variables()
|
||||
init_op = tf.variables_initializer([Xnew] + variables)
|
||||
session = model.enquire_session(session=None)
|
||||
with session.as_default():
|
||||
session.run(init_op)
|
||||
for i in range(maxiter):
|
||||
session.run(train_op)
|
||||
Xnew_value = session.run(Xnew_bounded)
|
||||
y_mean_value, y_var_value = session.run(y_mean_var)
|
||||
loss_value = session.run(loss)
|
||||
assert_all_finite(Xnew_value)
|
||||
assert_all_finite(y_mean_value)
|
||||
assert_all_finite(y_var_value)
|
||||
assert_all_finite(loss_value)
|
||||
return Xnew_value, y_mean_value, y_var_value, loss_value
|
|
@ -0,0 +1,40 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def get_beta_t(t, **kwargs):
|
||||
assert t > 0.
|
||||
return 2. * np.log(t / np.sqrt(np.log(2. * t)))
|
||||
|
||||
|
||||
def get_beta_td(t, ndim, bound=1.0, **kwargs):
|
||||
assert t > 0.
|
||||
assert ndim > 0.
|
||||
assert bound > 0.
|
||||
bt = 2. * np.log(float(ndim) * t**2 * np.pi**2 / (6. * bound))
|
||||
return np.sqrt(bt) if bt > 0. else 0.
|
||||
|
||||
|
||||
_UCB_MAP = {
|
||||
'get_beta_t': get_beta_t,
|
||||
'get_beta_td': get_beta_td,
|
||||
}
|
||||
|
||||
|
||||
def get_ucb_beta(ucb_beta, **kwargs):
|
||||
check_valid(ucb_beta)
|
||||
if not isinstance(ucb_beta, float):
|
||||
ucb_beta = _UCB_MAP[ucb_beta](**kwargs)
|
||||
assert isinstance(ucb_beta, float), type(ucb_beta)
|
||||
assert ucb_beta >= 0.0
|
||||
return ucb_beta
|
||||
|
||||
|
||||
def check_valid(ucb_beta):
|
||||
if isinstance(ucb_beta, float):
|
||||
if ucb_beta < 0.0:
|
||||
raise ValueError(("Invalid value for 'ucb_beta': {} "
|
||||
"(expected >= 0.0)").format(ucb_beta))
|
||||
else:
|
||||
if ucb_beta not in _UCB_MAP:
|
||||
raise ValueError(("Invalid value for 'ucb_beta': {} "
|
||||
"(expected 'get_beta_t' or 'get_beta_td')").format(ucb_beta))
|
|
@ -16,11 +16,14 @@ except (ModuleNotFoundError, ImportError):
|
|||
import numpy as np
|
||||
import torch
|
||||
sys.path.append("../")
|
||||
from analysis.util import get_analysis_logger # noqa
|
||||
from analysis.util import get_analysis_logger, TimerStruct # noqa
|
||||
from analysis.ddpg.ddpg import DDPG # noqa
|
||||
from analysis.ddpg.ou_process import OUProcess # noqa
|
||||
from analysis.gp_tf import GPRGD # noqa
|
||||
from analysis.nn_tf import NeuralNet # noqa
|
||||
from analysis.gpr import gpr_models # noqa
|
||||
from analysis.gpr import ucb # noqa
|
||||
from analysis.gpr.optimize import tf_optimize # noqa
|
||||
|
||||
LOG = get_analysis_logger(__name__)
|
||||
|
||||
|
@ -98,25 +101,31 @@ class Environment(object):
|
|||
def ddpg(env, config, n_loops=100):
|
||||
results = []
|
||||
x_axis = []
|
||||
num_collections = config['num_collections']
|
||||
gamma = config['gamma']
|
||||
tau = config['tau']
|
||||
a_lr = config['a_lr']
|
||||
c_lr = config['c_lr']
|
||||
n_epochs = config['n_epochs']
|
||||
model_ddpg = DDPG(n_actions=env.knob_dim, n_states=env.metric_dim, gamma=gamma, tau=tau,
|
||||
clr=c_lr, alr=a_lr)
|
||||
model_ddpg = DDPG(n_actions=env.knob_dim, n_states=env.metric_dim, gamma=gamma,
|
||||
clr=c_lr, alr=a_lr, shift=0.1)
|
||||
knob_data = np.random.rand(env.knob_dim)
|
||||
prev_metric_data = np.zeros(env.metric_dim)
|
||||
|
||||
for i in range(n_loops):
|
||||
reward, metric_data = env.simulate(knob_data)
|
||||
for i in range(num_collections):
|
||||
action = np.random.rand(env.knob_dim)
|
||||
reward, metric_data = env.simulate(action)
|
||||
if i > 0:
|
||||
model_ddpg.add_sample(prev_metric_data, prev_knob_data, prev_reward, metric_data)
|
||||
prev_metric_data = metric_data
|
||||
prev_knob_data = knob_data
|
||||
prev_reward = reward
|
||||
if i == 0:
|
||||
continue
|
||||
|
||||
for i in range(n_loops):
|
||||
reward, metric_data = env.simulate(knob_data)
|
||||
model_ddpg.add_sample(prev_metric_data, prev_knob_data, prev_reward, metric_data)
|
||||
prev_metric_data = metric_data
|
||||
prev_knob_data = knob_data
|
||||
prev_reward = reward
|
||||
for _ in range(n_epochs):
|
||||
model_ddpg.update()
|
||||
results.append(reward)
|
||||
|
@ -144,11 +153,18 @@ def dnn(env, config, n_loops=100):
|
|||
results = []
|
||||
x_axis = []
|
||||
memory = ReplayMemory()
|
||||
num_collections = config['num_collections']
|
||||
num_samples = config['num_samples']
|
||||
ou_process = config['ou_process']
|
||||
ou_process = False
|
||||
Xmin = np.zeros(env.knob_dim)
|
||||
Xmax = np.ones(env.knob_dim)
|
||||
noise = OUProcess(env.knob_dim)
|
||||
|
||||
for _ in range(num_collections):
|
||||
action = np.random.rand(env.knob_dim)
|
||||
reward, _ = env.simulate(action)
|
||||
memory.push(action, reward)
|
||||
|
||||
for i in range(n_loops):
|
||||
X_samples = np.random.rand(num_samples, env.knob_dim)
|
||||
if i >= 10:
|
||||
|
@ -165,9 +181,8 @@ def dnn(env, config, n_loops=100):
|
|||
noise_scale_end=0.0,
|
||||
debug=False,
|
||||
debug_interval=100)
|
||||
if i >= 5:
|
||||
actions, rewards = memory.get_all()
|
||||
model_nn.fit(np.array(actions), -np.array(rewards), fit_epochs=50)
|
||||
actions, rewards = memory.get_all()
|
||||
model_nn.fit(np.array(actions), -np.array(rewards), fit_epochs=50)
|
||||
res = model_nn.recommend(X_samples, Xmin, Xmax, recommend_epochs=10, explore=False)
|
||||
best_config_idx = np.argmin(res.minl.ravel())
|
||||
best_config = res.minl_conf[best_config_idx, :]
|
||||
|
@ -182,7 +197,7 @@ def dnn(env, config, n_loops=100):
|
|||
return np.array(results), np.array(x_axis)
|
||||
|
||||
|
||||
def gprgd(env, config, n_loops=100):
|
||||
def gpr(env, config, n_loops=100):
|
||||
results = []
|
||||
x_axis = []
|
||||
memory = ReplayMemory()
|
||||
|
@ -194,6 +209,7 @@ def gprgd(env, config, n_loops=100):
|
|||
action = np.random.rand(env.knob_dim)
|
||||
reward, _ = env.simulate(action)
|
||||
memory.push(action, reward)
|
||||
|
||||
for i in range(n_loops):
|
||||
X_samples = np.random.rand(num_samples, env.knob_dim)
|
||||
if i >= 10:
|
||||
|
@ -206,13 +222,13 @@ def gprgd(env, config, n_loops=100):
|
|||
X_samples = np.vstack((X_samples, np.array(entry[0]) * 0.97 + 0.01))
|
||||
model = GPRGD(length_scale=1.0,
|
||||
magnitude=1.0,
|
||||
max_train_size=100,
|
||||
max_train_size=2000,
|
||||
batch_size=100,
|
||||
num_threads=4,
|
||||
learning_rate=0.01,
|
||||
epsilon=1e-6,
|
||||
max_iter=500,
|
||||
sigma_multiplier=30.0,
|
||||
sigma_multiplier=3.0,
|
||||
mu_multiplier=1.0)
|
||||
|
||||
actions, rewards = memory.get_all()
|
||||
|
@ -224,7 +240,97 @@ def gprgd(env, config, n_loops=100):
|
|||
memory.push(best_config, reward)
|
||||
LOG.info('loop: %d reward: %f', i, reward[0])
|
||||
results.append(reward)
|
||||
x_axis.append(i)
|
||||
x_axis.append(i+1)
|
||||
return np.array(results), np.array(x_axis)
|
||||
|
||||
|
||||
def run_optimize(X, y, X_sample, model_name, opt_kwargs, model_kwargs):
|
||||
timer = TimerStruct()
|
||||
|
||||
# Create model (this also optimizes the hyperparameters if that option is enabled
|
||||
timer.start()
|
||||
m = gpr_models.create_model(model_name, X=X, y=y, **model_kwargs)
|
||||
timer.stop()
|
||||
model_creation_sec = timer.elapsed_seconds
|
||||
LOG.info(m._model.as_pandas_table())
|
||||
|
||||
# Optimize the DBMS's configuration knobs
|
||||
timer.start()
|
||||
X_new, ypred, yvar, loss = tf_optimize(m._model, X_sample, **opt_kwargs)
|
||||
timer.stop()
|
||||
config_optimize_sec = timer.elapsed_seconds
|
||||
|
||||
return X_new, ypred, m.get_model_parameters(), m.get_hyperparameters()
|
||||
|
||||
|
||||
def gpr_new(env, config, n_loops=100):
|
||||
model_name = 'BasicGP'
|
||||
model_opt_frequency = 5
|
||||
model_kwargs = {}
|
||||
model_kwargs['model_learning_rate'] = 0.001
|
||||
model_kwargs['model_maxiter'] = 5000
|
||||
opt_kwargs = {}
|
||||
opt_kwargs['learning_rate'] = 0.001
|
||||
opt_kwargs['maxiter'] = 100
|
||||
opt_kwargs['ucb_beta'] = 3.0
|
||||
|
||||
results = []
|
||||
x_axis = []
|
||||
memory = ReplayMemory()
|
||||
num_samples = config['num_samples']
|
||||
num_collections = config['num_collections']
|
||||
X_min = np.zeros(env.knob_dim)
|
||||
X_max = np.ones(env.knob_dim)
|
||||
X_bounds = [X_min, X_max]
|
||||
opt_kwargs['bounds'] = X_bounds
|
||||
|
||||
for _ in range(num_collections):
|
||||
action = np.random.rand(env.knob_dim)
|
||||
reward, _ = env.simulate(action)
|
||||
memory.push(action, reward)
|
||||
|
||||
for i in range(n_loops):
|
||||
X_samples = np.random.rand(num_samples, env.knob_dim)
|
||||
if i >= 5:
|
||||
actions, rewards = memory.get_all()
|
||||
tuples = tuple(zip(actions, rewards))
|
||||
top10 = heapq.nlargest(10, tuples, key=lambda e: e[1])
|
||||
for entry in top10:
|
||||
# Tensorflow get broken if we use the training data points as
|
||||
# starting points for GPRGD.
|
||||
X_samples = np.vstack((X_samples, np.array(entry[0]) * 0.97 + 0.01))
|
||||
|
||||
actions, rewards = memory.get_all()
|
||||
|
||||
ucb_beta = opt_kwargs.pop('ucb_beta')
|
||||
opt_kwargs['ucb_beta'] = ucb.get_ucb_beta(ucb_beta, t=i + 1., ndim=env.knob_dim)
|
||||
if model_opt_frequency > 0:
|
||||
optimize_hyperparams = i % model_opt_frequency == 0
|
||||
if not optimize_hyperparams:
|
||||
model_kwargs['hyperparameters'] = hyperparameters
|
||||
else:
|
||||
optimize_hyperparams = False
|
||||
model_kwargs['hyperparameters'] = None
|
||||
model_kwargs['optimize_hyperparameters'] = optimize_hyperparams
|
||||
|
||||
X_new, ypred, model_params, hyperparameters = run_optimize(np.array(actions),
|
||||
-np.array(rewards),
|
||||
X_samples,
|
||||
model_name,
|
||||
opt_kwargs,
|
||||
model_kwargs)
|
||||
|
||||
sort_index = np.argsort(ypred.squeeze())
|
||||
X_new = X_new[sort_index]
|
||||
ypred = ypred[sort_index].squeeze()
|
||||
|
||||
action = X_new[0]
|
||||
reward, _ = env.simulate(action)
|
||||
memory.push(action, reward)
|
||||
LOG.info('loop: %d reward: %f', i, reward[0])
|
||||
results.append(reward)
|
||||
x_axis.append(i+1)
|
||||
|
||||
return np.array(results), np.array(x_axis)
|
||||
|
||||
|
||||
|
@ -233,7 +339,7 @@ def plotlines(xs, results, labels, title, path):
|
|||
figsize = 13, 10
|
||||
figure, ax = plt.subplots(figsize=figsize)
|
||||
lines = []
|
||||
N = 20
|
||||
N = 1
|
||||
weights = np.ones(N)
|
||||
for x_axis, result, label in zip(xs, results, labels):
|
||||
result = np.convolve(weights/weights.sum(), result.flatten())[N-1:-N+1]
|
||||
|
@ -279,17 +385,16 @@ def run(tuners, configs, labels, title, env, n_loops, n_repeats):
|
|||
|
||||
|
||||
def main():
|
||||
env = Environment(knob_dim=192, metric_dim=60, modes=[0, 1], reward_variance=0.05)
|
||||
n_loops = 2000
|
||||
configs = [{'gamma': 0, 'tau': 0.002, 'a_lr': 0.01, 'c_lr': 0.01, 'n_epochs': 1},
|
||||
{'gamma': 0, 'tau': 0.002, 'a_lr': 0.01, 'c_lr': 0.001, 'n_epochs': 1},
|
||||
{'gamma': 0., 'tau': 0.002, 'a_lr': 0.001, 'c_lr': 0.001, 'n_epochs': 1},
|
||||
# {'num_samples': 100, 'ou_process': False},
|
||||
]
|
||||
tuners = [ddpg, ddpg, ddpg]
|
||||
labels = ['1', '2', '3']
|
||||
title = 'varing_workloads'
|
||||
n_repeats = [3, 3, 3]
|
||||
env = Environment(knob_dim=24, metric_dim=60, modes=[2], reward_variance=0.05)
|
||||
title = 'compare'
|
||||
n_repeats = [1, 1, 1, 1]
|
||||
n_loops = 80
|
||||
configs = [{'gamma': 0., 'c_lr': 0.001, 'a_lr': 0.01, 'num_collections': 50, 'n_epochs': 50},
|
||||
{'num_samples': 30, 'num_collections': 50},
|
||||
{'num_samples': 30, 'num_collections': 50},
|
||||
{'num_samples': 30, 'num_collections': 50}]
|
||||
tuners = [ddpg, gpr_new, dnn, gpr]
|
||||
labels = [tuner.__name__ for tuner in tuners]
|
||||
run(tuners, configs, labels, title, env, n_loops, n_repeats)
|
||||
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@ django-request-logging==0.4.6
|
|||
mock==2.0.0
|
||||
Fabric3>=1.13.1.post1
|
||||
git-lint==0.1.2
|
||||
gpflow==1.5.0
|
||||
hurry.filesize>=0.9
|
||||
numpy==1.14.0
|
||||
requests==2.20.0
|
||||
|
|
Loading…
Reference in New Issue