accelerate simulation; scale beta
This commit is contained in:
parent
a0c60afc3c
commit
f0c6d7ef1f
|
@ -109,7 +109,7 @@ class BasicGP(BaseModel):
|
|||
return [
|
||||
{
|
||||
'input_dim': X_dim,
|
||||
'ARD': True
|
||||
'ARD': False
|
||||
},
|
||||
{
|
||||
'input_dim': X_dim,
|
||||
|
|
|
@ -45,7 +45,7 @@ def tf_optimize(model, Xnew_arr, learning_rate=0.01, maxiter=100, ucb_beta=3.,
|
|||
beta_t = tf.constant(ucb_beta, name='ucb_beta', dtype=settings.float_type)
|
||||
y_mean_var = model.likelihood.predict_mean_and_var(*model._build_predict(Xin))
|
||||
loss = tf.subtract(y_mean_var[0], tf.multiply(beta_t, y_mean_var[1]), name='loss_fn')
|
||||
opt = tf.train.AdamOptimizer(learning_rate)
|
||||
opt = tf.train.AdamOptimizer(learning_rate, epsilon=1e-6)
|
||||
train_op = opt.minimize(loss)
|
||||
variables = opt.variables()
|
||||
init_op = tf.variables_initializer([Xnew] + variables)
|
||||
|
|
|
@ -20,11 +20,12 @@ _UCB_MAP = {
|
|||
}
|
||||
|
||||
|
||||
def get_ucb_beta(ucb_beta, **kwargs):
|
||||
def get_ucb_beta(ucb_beta, scale = 1., **kwargs):
|
||||
check_valid(ucb_beta)
|
||||
if not isinstance(ucb_beta, float):
|
||||
ucb_beta = _UCB_MAP[ucb_beta](**kwargs)
|
||||
assert isinstance(ucb_beta, float), type(ucb_beta)
|
||||
ucb_beta *= scale
|
||||
assert ucb_beta >= 0.0
|
||||
return ucb_beta
|
||||
|
||||
|
|
|
@ -14,6 +14,8 @@ try:
|
|||
except (ModuleNotFoundError, ImportError):
|
||||
plt = None
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import gpflow
|
||||
import torch
|
||||
sys.path.append("../")
|
||||
from analysis.util import get_analysis_logger, TimerStruct # noqa
|
||||
|
@ -176,17 +178,19 @@ def dnn(env, config, n_loops=100):
|
|||
top10 = heapq.nlargest(10, tuples, key=lambda e: e[1])
|
||||
for entry in top10:
|
||||
X_samples = np.vstack((X_samples, np.array(entry[0])))
|
||||
tf.reset_default_graph()
|
||||
sess = tf.InteractiveSession()
|
||||
model_nn = NeuralNet(n_input=X_samples.shape[1],
|
||||
batch_size=X_samples.shape[0],
|
||||
learning_rate=0.01,
|
||||
learning_rate=0.005,
|
||||
explore_iters=100,
|
||||
noise_scale_begin=0.1,
|
||||
noise_scale_end=0.0,
|
||||
debug=False,
|
||||
debug_interval=100)
|
||||
actions, rewards = memory.get_all()
|
||||
model_nn.fit(np.array(actions), -np.array(rewards), fit_epochs=50)
|
||||
res = model_nn.recommend(X_samples, Xmin, Xmax, recommend_epochs=10, explore=False)
|
||||
model_nn.fit(np.array(actions), -np.array(rewards), fit_epochs=100)
|
||||
res = model_nn.recommend(X_samples, Xmin, Xmax, recommend_epochs=20, explore=False)
|
||||
|
||||
best_config_idx = np.argmin(res.minl.ravel())
|
||||
best_config = res.minl_conf[best_config_idx, :]
|
||||
|
@ -248,11 +252,14 @@ def gpr(env, config, n_loops=100):
|
|||
return np.array(results), np.array(x_axis)
|
||||
|
||||
|
||||
def run_optimize(X, y, X_sample, model_name, opt_kwargs, model_kwargs):
|
||||
def run_optimize(X, y, X_samples, model_name, opt_kwargs, model_kwargs):
|
||||
timer = TimerStruct()
|
||||
|
||||
# Create model (this also optimizes the hyperparameters if that option is enabled
|
||||
timer.start()
|
||||
tf.reset_default_graph()
|
||||
graph = tf.get_default_graph()
|
||||
gpflow.reset_default_session(graph=graph)
|
||||
m = gpr_models.create_model(model_name, X=X, y=y, **model_kwargs)
|
||||
timer.stop()
|
||||
model_creation_sec = timer.elapsed_seconds
|
||||
|
@ -260,23 +267,22 @@ def run_optimize(X, y, X_sample, model_name, opt_kwargs, model_kwargs):
|
|||
|
||||
# Optimize the DBMS's configuration knobs
|
||||
timer.start()
|
||||
X_new, ypred, yvar, loss = tf_optimize(m._model, X_sample, **opt_kwargs)
|
||||
X_news, ypreds, yvar, loss = tf_optimize(m._model, X_samples, **opt_kwargs)
|
||||
timer.stop()
|
||||
config_optimize_sec = timer.elapsed_seconds
|
||||
|
||||
return X_new, ypred, m.get_model_parameters(), m.get_hyperparameters()
|
||||
return X_news, ypreds, m.get_model_parameters(), m.get_hyperparameters()
|
||||
|
||||
|
||||
def gpr_new(env, config, n_loops=100):
|
||||
model_name = 'BasicGP'
|
||||
model_opt_frequency = 5
|
||||
model_opt_frequency = 0
|
||||
model_kwargs = {}
|
||||
model_kwargs['model_learning_rate'] = 0.001
|
||||
model_kwargs['model_maxiter'] = 5000
|
||||
opt_kwargs = {}
|
||||
opt_kwargs['learning_rate'] = 0.001
|
||||
opt_kwargs['maxiter'] = 100
|
||||
opt_kwargs['ucb_beta'] = 3.0
|
||||
opt_kwargs['learning_rate'] = 0.01
|
||||
opt_kwargs['maxiter'] = 500
|
||||
|
||||
results = []
|
||||
x_axis = []
|
||||
|
@ -306,8 +312,8 @@ def gpr_new(env, config, n_loops=100):
|
|||
|
||||
actions, rewards = memory.get_all()
|
||||
|
||||
ucb_beta = opt_kwargs.pop('ucb_beta')
|
||||
opt_kwargs['ucb_beta'] = ucb.get_ucb_beta(ucb_beta, t=i + 1., ndim=env.knob_dim)
|
||||
ucb_beta = config['beta']
|
||||
opt_kwargs['ucb_beta'] = ucb.get_ucb_beta(ucb_beta, scale=config['scale'], t=i + 1., ndim=env.knob_dim)
|
||||
if model_opt_frequency > 0:
|
||||
optimize_hyperparams = i % model_opt_frequency == 0
|
||||
if not optimize_hyperparams:
|
||||
|
@ -316,7 +322,6 @@ def gpr_new(env, config, n_loops=100):
|
|||
optimize_hyperparams = False
|
||||
model_kwargs['hyperparameters'] = None
|
||||
model_kwargs['optimize_hyperparameters'] = optimize_hyperparams
|
||||
|
||||
X_new, ypred, _, hyperparameters = run_optimize(np.array(actions),
|
||||
-np.array(rewards),
|
||||
X_samples,
|
||||
|
@ -327,7 +332,6 @@ def gpr_new(env, config, n_loops=100):
|
|||
sort_index = np.argsort(ypred.squeeze())
|
||||
X_new = X_new[sort_index]
|
||||
ypred = ypred[sort_index].squeeze()
|
||||
|
||||
action = X_new[0]
|
||||
reward, _ = env.simulate(action)
|
||||
memory.push(action, reward)
|
||||
|
@ -361,8 +365,8 @@ def plotlines(xs, results, labels, title, path):
|
|||
def run(tuners, configs, labels, title, env, n_loops, n_repeats):
|
||||
if not plt:
|
||||
LOG.info("Cannot import matplotlib. Will write results to files instead of figures.")
|
||||
random.seed(2)
|
||||
np.random.seed(2)
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
torch.manual_seed(0)
|
||||
results = []
|
||||
xs = []
|
||||
|
@ -389,17 +393,21 @@ def run(tuners, configs, labels, title, env, n_loops, n_repeats):
|
|||
|
||||
|
||||
def main():
|
||||
env = Environment(knob_dim=8, metric_dim=60, modes=[2], reward_variance=0.15)
|
||||
title = 'ddpg_structure_nodrop'
|
||||
n_repeats = [2, 2]
|
||||
n_loops = 100
|
||||
configs = [{'gamma': 0., 'c_lr': 0.001, 'a_lr': 0.02, 'num_collections': 1, 'n_epochs': 30,
|
||||
'a_hidden_sizes': [128, 128, 64], 'c_hidden_sizes': [64, 128, 64]},
|
||||
env = Environment(knob_dim=192, metric_dim=60, modes=[2], reward_variance=0.15)
|
||||
title = 'dim=192'
|
||||
n_repeats = [1, 1, 1, 1, 1, 1]
|
||||
n_loops = 200
|
||||
configs = [
|
||||
{'num_collections': 5, 'num_samples': 30, 'beta': 'get_beta_td', 'scale': 0.1},
|
||||
{'num_collections': 5, 'num_samples': 30, 'beta': 'get_beta_td', 'scale': 0.2},
|
||||
{'num_collections': 5, 'num_samples': 30, 'beta': 'get_beta_td', 'scale': 0.6},
|
||||
{'num_collections': 5, 'num_samples': 30},
|
||||
{'gamma': 0., 'c_lr': 0.001, 'a_lr': 0.02, 'num_collections': 1, 'n_epochs': 30,
|
||||
'a_hidden_sizes': [64, 64, 32], 'c_hidden_sizes': [64, 128, 64]},
|
||||
'a_hidden_sizes': [128, 128, 64], 'c_hidden_sizes': [64, 128, 64]},
|
||||
{'num_collections': 5, 'num_samples': 30}
|
||||
]
|
||||
tuners = [ddpg, ddpg]
|
||||
labels = ['1', '2']
|
||||
tuners = [gpr_new, gpr_new, gpr_new, gpr, ddpg, dnn]
|
||||
labels = ['gpr_new_0.5', 'gpr_new_1', 'gpr_new_3', 'gpr', 'ddpg', 'dnn']
|
||||
run(tuners, configs, labels, title, env, n_loops, n_repeats)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue