python style
This commit is contained in:
parent
f0c6d7ef1f
commit
f34e879cb1
|
@ -55,7 +55,7 @@ class BaseModel(object):
|
||||||
if optimize_hyperparameters:
|
if optimize_hyperparameters:
|
||||||
opt = gpflow.train.AdamOptimizer(learning_rate)
|
opt = gpflow.train.AdamOptimizer(learning_rate)
|
||||||
opt.minimize(m, maxiter=maxiter)
|
opt.minimize(m, maxiter=maxiter)
|
||||||
self._model = m
|
self.model = m
|
||||||
|
|
||||||
def _get_kernel_kwargs(self, **kwargs):
|
def _get_kernel_kwargs(self, **kwargs):
|
||||||
return []
|
return []
|
||||||
|
@ -65,7 +65,7 @@ class BaseModel(object):
|
||||||
|
|
||||||
def get_hyperparameters(self):
|
def get_hyperparameters(self):
|
||||||
return {k: float(v) if v.ndim == 0 else v.tolist()
|
return {k: float(v) if v.ndim == 0 else v.tolist()
|
||||||
for k, v in self._model.read_values().items()}
|
for k, v in self.model.read_values().items()}
|
||||||
|
|
||||||
def get_model_parameters(self):
|
def get_model_parameters(self):
|
||||||
return {
|
return {
|
||||||
|
|
|
@ -20,7 +20,7 @@ _UCB_MAP = {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def get_ucb_beta(ucb_beta, scale = 1., **kwargs):
|
def get_ucb_beta(ucb_beta, scale=1., **kwargs):
|
||||||
check_valid(ucb_beta)
|
check_valid(ucb_beta)
|
||||||
if not isinstance(ucb_beta, float):
|
if not isinstance(ucb_beta, float):
|
||||||
ucb_beta = _UCB_MAP[ucb_beta](**kwargs)
|
ucb_beta = _UCB_MAP[ucb_beta](**kwargs)
|
||||||
|
|
|
@ -179,7 +179,7 @@ def dnn(env, config, n_loops=100):
|
||||||
for entry in top10:
|
for entry in top10:
|
||||||
X_samples = np.vstack((X_samples, np.array(entry[0])))
|
X_samples = np.vstack((X_samples, np.array(entry[0])))
|
||||||
tf.reset_default_graph()
|
tf.reset_default_graph()
|
||||||
sess = tf.InteractiveSession()
|
tf.InteractiveSession()
|
||||||
model_nn = NeuralNet(n_input=X_samples.shape[1],
|
model_nn = NeuralNet(n_input=X_samples.shape[1],
|
||||||
batch_size=X_samples.shape[0],
|
batch_size=X_samples.shape[0],
|
||||||
learning_rate=0.005,
|
learning_rate=0.005,
|
||||||
|
@ -267,7 +267,7 @@ def run_optimize(X, y, X_samples, model_name, opt_kwargs, model_kwargs):
|
||||||
|
|
||||||
# Optimize the DBMS's configuration knobs
|
# Optimize the DBMS's configuration knobs
|
||||||
timer.start()
|
timer.start()
|
||||||
X_news, ypreds, yvar, loss = tf_optimize(m._model, X_samples, **opt_kwargs)
|
X_news, ypreds, _, _ = tf_optimize(m.model, X_samples, **opt_kwargs)
|
||||||
timer.stop()
|
timer.stop()
|
||||||
config_optimize_sec = timer.elapsed_seconds
|
config_optimize_sec = timer.elapsed_seconds
|
||||||
|
|
||||||
|
@ -313,7 +313,8 @@ def gpr_new(env, config, n_loops=100):
|
||||||
actions, rewards = memory.get_all()
|
actions, rewards = memory.get_all()
|
||||||
|
|
||||||
ucb_beta = config['beta']
|
ucb_beta = config['beta']
|
||||||
opt_kwargs['ucb_beta'] = ucb.get_ucb_beta(ucb_beta, scale=config['scale'], t=i + 1., ndim=env.knob_dim)
|
opt_kwargs['ucb_beta'] = ucb.get_ucb_beta(ucb_beta, scale=config['scale'],
|
||||||
|
t=i + 1., ndim=env.knob_dim)
|
||||||
if model_opt_frequency > 0:
|
if model_opt_frequency > 0:
|
||||||
optimize_hyperparams = i % model_opt_frequency == 0
|
optimize_hyperparams = i % model_opt_frequency == 0
|
||||||
if not optimize_hyperparams:
|
if not optimize_hyperparams:
|
||||||
|
@ -397,15 +398,13 @@ def main():
|
||||||
title = 'dim=192'
|
title = 'dim=192'
|
||||||
n_repeats = [1, 1, 1, 1, 1, 1]
|
n_repeats = [1, 1, 1, 1, 1, 1]
|
||||||
n_loops = 200
|
n_loops = 200
|
||||||
configs = [
|
configs = [{'num_collections': 5, 'num_samples': 30, 'beta': 'get_beta_td', 'scale': 0.1},
|
||||||
{'num_collections': 5, 'num_samples': 30, 'beta': 'get_beta_td', 'scale': 0.1},
|
|
||||||
{'num_collections': 5, 'num_samples': 30, 'beta': 'get_beta_td', 'scale': 0.2},
|
{'num_collections': 5, 'num_samples': 30, 'beta': 'get_beta_td', 'scale': 0.2},
|
||||||
{'num_collections': 5, 'num_samples': 30, 'beta': 'get_beta_td', 'scale': 0.6},
|
{'num_collections': 5, 'num_samples': 30, 'beta': 'get_beta_td', 'scale': 0.6},
|
||||||
{'num_collections': 5, 'num_samples': 30},
|
{'num_collections': 5, 'num_samples': 30},
|
||||||
{'gamma': 0., 'c_lr': 0.001, 'a_lr': 0.02, 'num_collections': 1, 'n_epochs': 30,
|
{'gamma': 0., 'c_lr': 0.001, 'a_lr': 0.02, 'num_collections': 1, 'n_epochs': 30,
|
||||||
'a_hidden_sizes': [128, 128, 64], 'c_hidden_sizes': [64, 128, 64]},
|
'a_hidden_sizes': [128, 128, 64], 'c_hidden_sizes': [64, 128, 64]},
|
||||||
{'num_collections': 5, 'num_samples': 30}
|
{'num_collections': 5, 'num_samples': 30}]
|
||||||
]
|
|
||||||
tuners = [gpr_new, gpr_new, gpr_new, gpr, ddpg, dnn]
|
tuners = [gpr_new, gpr_new, gpr_new, gpr, ddpg, dnn]
|
||||||
labels = ['gpr_new_0.5', 'gpr_new_1', 'gpr_new_3', 'gpr', 'ddpg', 'dnn']
|
labels = ['gpr_new_0.5', 'gpr_new_1', 'gpr_new_3', 'gpr', 'ddpg', 'dnn']
|
||||||
run(tuners, configs, labels, title, env, n_loops, n_repeats)
|
run(tuners, configs, labels, title, env, n_loops, n_repeats)
|
||||||
|
|
Loading…
Reference in New Issue