231 lines
8.0 KiB
Python
231 lines
8.0 KiB
Python
#
|
|
# OtterTune - ddpg.py
|
|
#
|
|
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
|
#
|
|
# from: https://github.com/KqSMea8/CDBTune
|
|
# Zhang, Ji, et al. "An end-to-end automatic cloud database tuning system using
|
|
# deep reinforcement learning." Proceedings of the 2019 International Conference
|
|
# on Management of Data. ACM, 2019
|
|
|
|
import pickle
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optimizer
|
|
from torch.autograd import Variable
|
|
|
|
from analysis.ddpg.ou_process import OUProcess
|
|
from analysis.ddpg.prioritized_replay_memory import PrioritizedReplayMemory
|
|
from analysis.util import get_analysis_logger
|
|
|
|
LOG = get_analysis_logger(__name__)
|
|
|
|
|
|
class Actor(nn.Module):
|
|
|
|
def __init__(self, n_states, n_actions):
|
|
super(Actor, self).__init__()
|
|
self.layers = nn.Sequential(
|
|
nn.Linear(n_states, 128),
|
|
nn.LeakyReLU(negative_slope=0.2),
|
|
nn.BatchNorm1d(128),
|
|
nn.Linear(128, 128),
|
|
nn.Tanh(),
|
|
nn.Dropout(0.3),
|
|
|
|
nn.Linear(128, 64),
|
|
nn.Tanh(),
|
|
nn.BatchNorm1d(64),
|
|
nn.Linear(64, n_actions)
|
|
)
|
|
# This act layer maps the output to (0, 1)
|
|
self.act = nn.Sigmoid()
|
|
self._init_weights()
|
|
|
|
def _init_weights(self):
|
|
|
|
for m in self.layers:
|
|
if isinstance(m, nn.Linear):
|
|
m.weight.data.normal_(0.0, 1e-2)
|
|
m.bias.data.uniform_(-0.1, 0.1)
|
|
|
|
def forward(self, states): # pylint: disable=arguments-differ
|
|
|
|
actions = self.act(self.layers(states))
|
|
return actions
|
|
|
|
|
|
class Critic(nn.Module):
|
|
|
|
def __init__(self, n_states, n_actions):
|
|
super(Critic, self).__init__()
|
|
self.state_input = nn.Linear(n_states, 128)
|
|
self.action_input = nn.Linear(n_actions, 128)
|
|
self.act = nn.Tanh()
|
|
self.layers = nn.Sequential(
|
|
nn.Linear(256, 256),
|
|
nn.LeakyReLU(negative_slope=0.2),
|
|
nn.BatchNorm1d(256),
|
|
|
|
nn.Linear(256, 64),
|
|
nn.Tanh(),
|
|
nn.Dropout(0.3),
|
|
nn.BatchNorm1d(64),
|
|
nn.Linear(64, 1),
|
|
)
|
|
self._init_weights()
|
|
|
|
def _init_weights(self):
|
|
self.state_input.weight.data.normal_(0.0, 1e-2)
|
|
self.state_input.bias.data.uniform_(-0.1, 0.1)
|
|
|
|
self.action_input.weight.data.normal_(0.0, 1e-2)
|
|
self.action_input.bias.data.uniform_(-0.1, 0.1)
|
|
|
|
for m in self.layers:
|
|
if isinstance(m, nn.Linear):
|
|
m.weight.data.normal_(0.0, 1e-2)
|
|
m.bias.data.uniform_(-0.1, 0.1)
|
|
|
|
def forward(self, states, actions): # pylint: disable=arguments-differ
|
|
states = self.act(self.state_input(states))
|
|
actions = self.act(self.action_input(actions))
|
|
|
|
_input = torch.cat([states, actions], dim=1)
|
|
value = self.layers(_input)
|
|
return value
|
|
|
|
|
|
class DDPG(object):
|
|
|
|
def __init__(self, n_states, n_actions, model_name='', alr=0.001, clr=0.001,
|
|
gamma=0.9, batch_size=32, tau=0.002, memory_size=100000):
|
|
self.n_states = n_states
|
|
self.n_actions = n_actions
|
|
self.alr = alr
|
|
self.clr = clr
|
|
self.model_name = model_name
|
|
self.batch_size = batch_size
|
|
self.gamma = gamma
|
|
self.tau = tau
|
|
|
|
self._build_network()
|
|
|
|
self.replay_memory = PrioritizedReplayMemory(capacity=memory_size)
|
|
self.noise = OUProcess(n_actions)
|
|
|
|
@staticmethod
|
|
def totensor(x):
|
|
return Variable(torch.FloatTensor(x))
|
|
|
|
def _build_network(self):
|
|
self.actor = Actor(self.n_states, self.n_actions)
|
|
self.target_actor = Actor(self.n_states, self.n_actions)
|
|
self.critic = Critic(self.n_states, self.n_actions)
|
|
self.target_critic = Critic(self.n_states, self.n_actions)
|
|
|
|
# Copy actor's parameters
|
|
self._update_target(self.target_actor, self.actor, tau=1.0)
|
|
|
|
# Copy critic's parameters
|
|
self._update_target(self.target_critic, self.critic, tau=1.0)
|
|
|
|
self.loss_criterion = nn.MSELoss()
|
|
self.actor_optimizer = optimizer.Adam(lr=self.alr, params=self.actor.parameters(),
|
|
weight_decay=1e-5)
|
|
self.critic_optimizer = optimizer.Adam(lr=self.clr, params=self.critic.parameters(),
|
|
weight_decay=1e-5)
|
|
|
|
@staticmethod
|
|
def _update_target(target, source, tau):
|
|
for (target_param, param) in zip(target.parameters(), source.parameters()):
|
|
target_param.data.copy_(
|
|
target_param.data * (1 - tau) + param.data * tau
|
|
)
|
|
|
|
def reset(self, sigma, theta):
|
|
self.noise.reset(sigma, theta)
|
|
|
|
def _sample_batch(self):
|
|
batch, idx = self.replay_memory.sample(self.batch_size)
|
|
states = list(map(lambda x: x[0].tolist(), batch)) # pylint: disable=W0141
|
|
actions = list(map(lambda x: x[1].tolist(), batch)) # pylint: disable=W0141
|
|
rewards = list(map(lambda x: x[2], batch)) # pylint: disable=W0141
|
|
next_states = list(map(lambda x: x[3].tolist(), batch)) # pylint: disable=W0141
|
|
|
|
return idx, states, next_states, actions, rewards
|
|
|
|
def add_sample(self, state, action, reward, next_state):
|
|
self.critic.eval()
|
|
self.actor.eval()
|
|
self.target_critic.eval()
|
|
self.target_actor.eval()
|
|
batch_state = self.totensor([state.tolist()])
|
|
batch_next_state = self.totensor([next_state.tolist()])
|
|
current_value = self.critic(batch_state, self.totensor([action.tolist()]))
|
|
target_action = self.target_actor(batch_next_state)
|
|
target_value = self.totensor([reward]) \
|
|
+ self.target_critic(batch_next_state, target_action) * self.gamma
|
|
error = float(torch.abs(current_value - target_value).data.numpy()[0])
|
|
|
|
self.target_actor.train()
|
|
self.actor.train()
|
|
self.critic.train()
|
|
self.target_critic.train()
|
|
self.replay_memory.add(error, (state, action, reward, next_state))
|
|
|
|
def update(self):
|
|
idxs, states, next_states, actions, rewards = self._sample_batch()
|
|
batch_states = self.totensor(states)
|
|
batch_next_states = self.totensor(next_states)
|
|
batch_actions = self.totensor(actions)
|
|
batch_rewards = self.totensor(rewards)
|
|
|
|
target_next_actions = self.target_actor(batch_next_states).detach()
|
|
target_next_value = self.target_critic(batch_next_states, target_next_actions).detach()
|
|
current_value = self.critic(batch_states, batch_actions)
|
|
next_value = batch_rewards + target_next_value * self.gamma
|
|
|
|
# update prioritized memory
|
|
if isinstance(self.replay_memory, PrioritizedReplayMemory):
|
|
error = torch.abs(current_value - next_value).data.numpy()
|
|
for i in range(self.batch_size):
|
|
idx = idxs[i]
|
|
self.replay_memory.update(idx, error[i][0])
|
|
|
|
# Update Critic
|
|
loss = self.loss_criterion(current_value, next_value)
|
|
self.critic_optimizer.zero_grad()
|
|
loss.backward()
|
|
self.critic_optimizer.step()
|
|
|
|
# Update Actor
|
|
self.critic.eval()
|
|
policy_loss = -self.critic(batch_states, self.actor(batch_states))
|
|
policy_loss = policy_loss.mean()
|
|
self.actor_optimizer.zero_grad()
|
|
policy_loss.backward()
|
|
|
|
self.actor_optimizer.step()
|
|
self.critic.train()
|
|
|
|
self._update_target(self.target_critic, self.critic, tau=self.tau)
|
|
self._update_target(self.target_actor, self.actor, tau=self.tau)
|
|
|
|
return loss.data, policy_loss.data
|
|
|
|
def choose_action(self, states):
|
|
self.actor.eval()
|
|
act = self.actor(self.totensor([states.tolist()])).squeeze(0)
|
|
self.actor.train()
|
|
action = act.data.numpy()
|
|
action += self.noise.noise()
|
|
return action.clip(0, 1)
|
|
|
|
def set_model(self, actor_dict, critic_dict):
|
|
self.actor.load_state_dict(pickle.loads(actor_dict))
|
|
self.critic.load_state_dict(pickle.loads(critic_dict))
|
|
|
|
def get_model(self):
|
|
return pickle.dumps(self.actor.state_dict()), pickle.dumps(self.critic.state_dict())
|