428 lines
14 KiB
Python
428 lines
14 KiB
Python
#
|
|
# OtterTune - ddpg.py
|
|
#
|
|
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
|
|
#
|
|
# from: https://github.com/KqSMea8/CDBTune
|
|
# Zhang, Ji, et al. "An end-to-end automatic cloud database tuning system using
|
|
# deep reinforcement learning." Proceedings of the 2019 International Conference
|
|
# on Management of Data. ACM, 2019
|
|
|
|
import os
|
|
import pickle
|
|
import math
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import init, Parameter
|
|
import torch.nn.functional as F
|
|
import torch.optim as optimizer
|
|
from torch.autograd import Variable
|
|
|
|
from analysis.ddpg.ou_process import OUProcess
|
|
from analysis.ddpg.prioritized_replay_memory import PrioritizedReplayMemory
|
|
from analysis.util import get_analysis_logger
|
|
|
|
LOG = get_analysis_logger(__name__)
|
|
|
|
|
|
# code from https://github.com/Kaixhin/NoisyNet-A3C/blob/master/model.py
|
|
class NoisyLinear(nn.Linear):
|
|
def __init__(self, in_features, out_features, sigma_init=0.05, bias=True):
|
|
super(NoisyLinear, self).__init__(in_features, out_features, bias=True)
|
|
# reuse self.weight and self.bias
|
|
self.sigma_init = sigma_init
|
|
self.sigma_weight = Parameter(torch.Tensor(out_features, in_features))
|
|
self.sigma_bias = Parameter(torch.Tensor(out_features))
|
|
self.epsilon_weight = None
|
|
self.epsilon_bias = None
|
|
self.register_buffer('epsilon_weight', torch.zeros(out_features, in_features))
|
|
self.register_buffer('epsilon_bias', torch.zeros(out_features))
|
|
self.reset_parameters()
|
|
|
|
def reset_parameters(self):
|
|
# Only init after all params added (otherwise super().__init__() fails)
|
|
if hasattr(self, 'sigma_weight'):
|
|
init.uniform(self.weight, -math.sqrt(3 / self.in_features),
|
|
math.sqrt(3 / self.in_features))
|
|
init.uniform(self.bias, -math.sqrt(3 / self.in_features),
|
|
math.sqrt(3 / self.in_features))
|
|
init.constant(self.sigma_weight, self.sigma_init)
|
|
init.constant(self.sigma_bias, self.sigma_init)
|
|
|
|
def forward(self, x):
|
|
return F.linear(x, self.weight + self.sigma_weight * Variable(self.epsilon_weight),
|
|
self.bias + self.sigma_bias * Variable(self.epsilon_bias))
|
|
|
|
def sample_noise(self):
|
|
self.epsilon_weight = torch.randn(self.out_features, self.in_features)
|
|
self.epsilon_bias = torch.randn(self.out_features)
|
|
|
|
def remove_noise(self):
|
|
self.epsilon_weight = torch.zeros(self.out_features, self.in_features)
|
|
self.epsilon_bias = torch.zeros(self.out_features)
|
|
|
|
|
|
class Normalizer(object):
|
|
|
|
def __init__(self, mean, variance):
|
|
if isinstance(mean, list):
|
|
mean = np.array(mean)
|
|
if isinstance(variance, list):
|
|
variance = np.array(variance)
|
|
self.mean = mean
|
|
self.std = np.sqrt(variance + 0.00001)
|
|
|
|
def normalize(self, x):
|
|
if isinstance(x, list):
|
|
x = np.array(x)
|
|
x = x - self.mean
|
|
x = x / self.std
|
|
|
|
return Variable(torch.FloatTensor(x))
|
|
|
|
def __call__(self, x, *args, **kwargs):
|
|
return self.normalize(x)
|
|
|
|
|
|
class Actor(nn.Module):
|
|
|
|
def __init__(self, n_states, n_actions, noisy=False):
|
|
super(Actor, self).__init__()
|
|
self.layers = nn.Sequential(
|
|
nn.Linear(n_states, 128),
|
|
nn.LeakyReLU(negative_slope=0.2),
|
|
nn.BatchNorm1d(128),
|
|
nn.Linear(128, 128),
|
|
nn.Tanh(),
|
|
nn.Dropout(0.3),
|
|
|
|
nn.Linear(128, 64),
|
|
nn.Tanh(),
|
|
nn.BatchNorm1d(64),
|
|
)
|
|
if noisy:
|
|
self.out = NoisyLinear(64, n_actions)
|
|
else:
|
|
self.out = nn.Linear(64, n_actions)
|
|
self._init_weights()
|
|
self.act = nn.Sigmoid()
|
|
|
|
def _init_weights(self):
|
|
|
|
for m in self.layers:
|
|
if isinstance(m, nn.Linear):
|
|
m.weight.data.normal_(0.0, 1e-2)
|
|
m.bias.data.uniform_(-0.1, 0.1)
|
|
|
|
def sample_noise(self):
|
|
self.out.sample_noise()
|
|
|
|
def forward(self, x): # pylint: disable=arguments-differ
|
|
|
|
out = self.act(self.out(self.layers(x)))
|
|
return out
|
|
|
|
|
|
class Critic(nn.Module):
|
|
|
|
def __init__(self, n_states, n_actions):
|
|
super(Critic, self).__init__()
|
|
self.state_input = nn.Linear(n_states, 128)
|
|
self.action_input = nn.Linear(n_actions, 128)
|
|
self.act = nn.Tanh()
|
|
self.layers = nn.Sequential(
|
|
nn.Linear(256, 256),
|
|
nn.LeakyReLU(negative_slope=0.2),
|
|
nn.BatchNorm1d(256),
|
|
|
|
nn.Linear(256, 64),
|
|
nn.Tanh(),
|
|
nn.Dropout(0.3),
|
|
nn.BatchNorm1d(64),
|
|
nn.Linear(64, 1),
|
|
)
|
|
self._init_weights()
|
|
|
|
def _init_weights(self):
|
|
self.state_input.weight.data.normal_(0.0, 1e-2)
|
|
self.state_input.bias.data.uniform_(-0.1, 0.1)
|
|
|
|
self.action_input.weight.data.normal_(0.0, 1e-2)
|
|
self.action_input.bias.data.uniform_(-0.1, 0.1)
|
|
|
|
for m in self.layers:
|
|
if isinstance(m, nn.Linear):
|
|
m.weight.data.normal_(0.0, 1e-2)
|
|
m.bias.data.uniform_(-0.1, 0.1)
|
|
|
|
def forward(self, x, action): # pylint: disable=arguments-differ
|
|
x = self.act(self.state_input(x))
|
|
action = self.act(self.action_input(action))
|
|
|
|
_input = torch.cat([x, action], dim=1)
|
|
value = self.layers(_input)
|
|
return value
|
|
|
|
|
|
class DDPG(object):
|
|
|
|
def __init__(self, n_states, n_actions, model_name='', alr=0.001, clr=0.001,
|
|
gamma=0.9, batch_size=32, tau=0.002, memory_size=100000,
|
|
ouprocess=True, mean_var_path=None, supervised=False):
|
|
self.n_states = n_states
|
|
self.n_actions = n_actions
|
|
self.alr = alr
|
|
self.clr = clr
|
|
self.model_name = model_name
|
|
self.batch_size = batch_size
|
|
self.gamma = gamma
|
|
self.tau = tau
|
|
self.ouprocess = ouprocess
|
|
|
|
if mean_var_path is None:
|
|
mean = np.zeros(n_states)
|
|
var = np.zeros(n_states)
|
|
elif not os.path.exists(mean_var_path):
|
|
mean = np.zeros(n_states)
|
|
var = np.zeros(n_states)
|
|
else:
|
|
with open(mean_var_path, 'rb') as f:
|
|
mean, var = pickle.load(f)
|
|
|
|
self.normalizer = Normalizer(mean, var)
|
|
|
|
if supervised:
|
|
self._build_actor()
|
|
LOG.info("Supervised Learning Initialized")
|
|
else:
|
|
# Build Network
|
|
self._build_network()
|
|
|
|
self.replay_memory = PrioritizedReplayMemory(capacity=memory_size)
|
|
self.noise = OUProcess(n_actions)
|
|
|
|
@staticmethod
|
|
def totensor(x):
|
|
return Variable(torch.FloatTensor(x))
|
|
|
|
def _build_actor(self):
|
|
if self.ouprocess:
|
|
noisy = False
|
|
else:
|
|
noisy = True
|
|
self.actor = Actor(self.n_states, self.n_actions, noisy=noisy)
|
|
self.actor_criterion = nn.MSELoss()
|
|
self.actor_optimizer = optimizer.Adam(lr=self.alr, params=self.actor.parameters())
|
|
|
|
def _build_network(self):
|
|
if self.ouprocess:
|
|
noisy = False
|
|
else:
|
|
noisy = True
|
|
self.actor = Actor(self.n_states, self.n_actions, noisy=noisy)
|
|
self.target_actor = Actor(self.n_states, self.n_actions)
|
|
self.critic = Critic(self.n_states, self.n_actions)
|
|
self.target_critic = Critic(self.n_states, self.n_actions)
|
|
|
|
# if model params are provided, load them
|
|
if len(self.model_name):
|
|
self.load_model(model_name=self.model_name)
|
|
LOG.info("Loading model from file: %s", self.model_name)
|
|
|
|
# Copy actor's parameters
|
|
self._update_target(self.target_actor, self.actor, tau=1.0)
|
|
|
|
# Copy critic's parameters
|
|
self._update_target(self.target_critic, self.critic, tau=1.0)
|
|
|
|
self.loss_criterion = nn.MSELoss()
|
|
self.actor_optimizer = optimizer.Adam(lr=self.alr, params=self.actor.parameters(),
|
|
weight_decay=1e-5)
|
|
self.critic_optimizer = optimizer.Adam(lr=self.clr, params=self.critic.parameters(),
|
|
weight_decay=1e-5)
|
|
|
|
@staticmethod
|
|
def _update_target(target, source, tau):
|
|
for (target_param, param) in zip(target.parameters(), source.parameters()):
|
|
target_param.data.copy_(
|
|
target_param.data * (1 - tau) + param.data * tau
|
|
)
|
|
|
|
def reset(self, sigma):
|
|
self.noise.reset(sigma)
|
|
|
|
def _sample_batch(self):
|
|
batch, idx = self.replay_memory.sample(self.batch_size)
|
|
# batch = self.replay_memory.sample(self.batch_size)
|
|
states = list(map(lambda x: x[0].tolist(), batch)) # pylint: disable=W0141
|
|
next_states = list(map(lambda x: x[3].tolist(), batch)) # pylint: disable=W0141
|
|
actions = list(map(lambda x: x[1].tolist(), batch)) # pylint: disable=W0141
|
|
rewards = list(map(lambda x: x[2], batch)) # pylint: disable=W0141
|
|
terminates = list(map(lambda x: x[4], batch)) # pylint: disable=W0141
|
|
|
|
return idx, states, next_states, actions, rewards, terminates
|
|
|
|
def add_sample(self, state, action, reward, next_state, terminate):
|
|
self.critic.eval()
|
|
self.actor.eval()
|
|
self.target_critic.eval()
|
|
self.target_actor.eval()
|
|
batch_state = self.normalizer([state.tolist()])
|
|
batch_next_state = self.normalizer([next_state.tolist()])
|
|
current_value = self.critic(batch_state, self.totensor([action.tolist()]))
|
|
target_action = self.target_actor(batch_next_state)
|
|
target_value = self.totensor([reward]) \
|
|
+ self.totensor([0 if x else 1 for x in [terminate]]) \
|
|
* self.target_critic(batch_next_state, target_action) * self.gamma
|
|
error = float(torch.abs(current_value - target_value).data.numpy()[0])
|
|
|
|
self.target_actor.train()
|
|
self.actor.train()
|
|
self.critic.train()
|
|
self.target_critic.train()
|
|
self.replay_memory.add(error, (state, action, reward, next_state, terminate))
|
|
|
|
def update(self):
|
|
idxs, states, next_states, actions, rewards, terminates = self._sample_batch()
|
|
batch_states = self.normalizer(states)
|
|
batch_next_states = self.normalizer(next_states)
|
|
batch_actions = self.totensor(actions)
|
|
batch_rewards = self.totensor(rewards)
|
|
mask = [0 if x else 1 for x in terminates]
|
|
mask = self.totensor(mask)
|
|
|
|
target_next_actions = self.target_actor(batch_next_states).detach()
|
|
target_next_value = self.target_critic(batch_next_states, target_next_actions).detach()
|
|
current_value = self.critic(batch_states, batch_actions)
|
|
# TODO (dongshen): This clause is the original clause, but it has some mistakes
|
|
# next_value = batch_rewards + mask * target_next_value * self.gamma
|
|
# Since terminate is always false, I remove the mask here.
|
|
next_value = batch_rewards + target_next_value * self.gamma
|
|
# Update Critic
|
|
|
|
# update prioritized memory
|
|
error = torch.abs(current_value - next_value).data.numpy()
|
|
for i in range(self.batch_size):
|
|
idx = idxs[i]
|
|
self.replay_memory.update(idx, error[i][0])
|
|
|
|
loss = self.loss_criterion(current_value, next_value)
|
|
self.critic_optimizer.zero_grad()
|
|
loss.backward()
|
|
self.critic_optimizer.step()
|
|
|
|
# Update Actor
|
|
self.critic.eval()
|
|
policy_loss = -self.critic(batch_states, self.actor(batch_states))
|
|
policy_loss = policy_loss.mean()
|
|
self.actor_optimizer.zero_grad()
|
|
policy_loss.backward()
|
|
|
|
self.actor_optimizer.step()
|
|
self.critic.train()
|
|
|
|
self._update_target(self.target_critic, self.critic, tau=self.tau)
|
|
self._update_target(self.target_actor, self.actor, tau=self.tau)
|
|
|
|
return loss.data, policy_loss.data
|
|
|
|
def choose_action(self, x):
|
|
""" Select Action according to the current state
|
|
Args:
|
|
x: np.array, current state
|
|
"""
|
|
self.actor.eval()
|
|
act = self.actor(self.normalizer([x.tolist()])).squeeze(0)
|
|
self.actor.train()
|
|
action = act.data.numpy()
|
|
if self.ouprocess:
|
|
action += self.noise.noise()
|
|
return action.clip(0, 1)
|
|
|
|
def sample_noise(self):
|
|
self.actor.sample_noise()
|
|
|
|
def load_model(self, model_name):
|
|
""" Load Torch Model from files
|
|
Args:
|
|
model_name: str, model path
|
|
"""
|
|
self.actor.load_state_dict(
|
|
torch.load('{}_actor.pth'.format(model_name))
|
|
)
|
|
self.critic.load_state_dict(
|
|
torch.load('{}_critic.pth'.format(model_name))
|
|
)
|
|
|
|
def save_model(self, model_name):
|
|
""" Save Torch Model from files
|
|
Args:
|
|
model_dir: str, model dir
|
|
title: str, model name
|
|
"""
|
|
torch.save(
|
|
self.actor.state_dict(),
|
|
'{}_actor.pth'.format(model_name)
|
|
)
|
|
|
|
torch.save(
|
|
self.critic.state_dict(),
|
|
'{}_critic.pth'.format(model_name)
|
|
)
|
|
|
|
def set_model(self, actor_dict, critic_dict):
|
|
self.actor.load_state_dict(pickle.loads(actor_dict))
|
|
self.critic.load_state_dict(pickle.loads(critic_dict))
|
|
|
|
def get_model(self):
|
|
return pickle.dumps(self.actor.state_dict()), pickle.dumps(self.critic.state_dict())
|
|
|
|
def save_actor(self, path):
|
|
""" save actor network
|
|
Args:
|
|
path, str, path to save
|
|
"""
|
|
torch.save(
|
|
self.actor.state_dict(),
|
|
path
|
|
)
|
|
|
|
def load_actor(self, path):
|
|
""" load actor network
|
|
Args:
|
|
path, str, path to load
|
|
"""
|
|
self.actor.load_state_dict(
|
|
torch.load(path)
|
|
)
|
|
|
|
def train_actor(self, batch_data, is_train=True):
|
|
""" Train the actor separately with data
|
|
Args:
|
|
batch_data: tuple, (states, actions)
|
|
is_train: bool
|
|
Return:
|
|
_loss: float, training loss
|
|
"""
|
|
states, action = batch_data
|
|
|
|
if is_train:
|
|
self.actor.train()
|
|
pred = self.actor(self.normalizer(states))
|
|
action = self.totensor(action)
|
|
|
|
_loss = self.actor_criterion(pred, action)
|
|
|
|
self.actor_optimizer.zero_grad()
|
|
_loss.backward()
|
|
self.actor_optimizer.step()
|
|
|
|
else:
|
|
self.actor.eval()
|
|
pred = self.actor(self.normalizer(states))
|
|
action = self.totensor(action)
|
|
_loss = self.actor_criterion(pred, action)
|
|
|
|
return _loss.data[0]
|