rename batch to runner.

fill out makefile.
add dev pipeline.
gitignore data dir.
add logger.py.
fill out readme.md.
export env.yml.
This commit is contained in:
Matt 2023-01-26 11:00:24 -08:00
parent 1f13224c4f
commit 0f12b26e40
8 changed files with 275 additions and 33 deletions

View File

@ -1,15 +1,25 @@
CONDA_ENV=ml_pipeline
.PHONY: help
all: run
all: help
run:
./launch.sh
run: ## run the pipeline (train)
python src/pipeline.py \
debug=false
debug: ## run the pipeline (train) with debugging enabled
python src/pipeline.py \
debug=true
data:
python src/data.py
data: ## download the mnist data
wget https://pjreddie.com/media/files/mnist_train.csv -O data/mnist_train.csv
wget https://pjreddie.com/media/files/mnist_test.csv -O data/mnist_test.csv
batch:
python src/batch.py
env_import: environment.yml ## import any changes to env.yml into conda env
conda env update -n ${CONDA_ENV} --file $^
env_export: ## export the conda envirnoment without package or name
conda env export | head -n -1 | tail -n +2 > $@
help: ## display this help message
@grep -E '^[a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | sort | awk 'BEGIN {FS = ":.*?## "}; {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}'
install:
conda env updates -n ${CONDA_ENV} --file environment.yml

View File

@ -40,14 +40,54 @@ Especially in a research lab, standardizing on a few components makes switching
In this template, you'll see the following:
- `src/model`, `src/config`, `storage`, `test` dirs.
- `if __name__ == "__main__"` tests.
## directory structure
- `src/model`
- `src/config`
- `data/`
- `test/`
- pytest: unit testing.
- good for data shape
- TODO:
- `docs/`
- switching projects is easier with these in place
- organize them
- `**/__init__.py`
- creates modules out of dir.
- `import module` works with these.
- `README.md`
- root level required.
- can exist inside any dir.
- `environment.yml`
- `Makefile`
- to install and run stuff.
- houses common operations and scripts.
- `launch.sh`
- script to dispatch training.
## testing
- `if __name__ == "__main__"`.
- good way to test things
- enables lots breakpoints.
## config
- Hydra config.
- dataloader, optimizer, criterion, device, state are constructed in main, but passed to an object that runs batches.
- tqdm to track progress.
- debug config flag enables lots breakpoints.
- python type hints.
- a `launch.sh` script to dispatch training.
- a Makefile to install and run stuff.
- automatic linting with the `black` package.
- quickly experiment with hyperparameters
- good way to define env. variables
- lr, workers, batch_size
- debug
## data
- collate functions!
## formatting python
- python type hints.
- automatic linting with the `black` package.
## running
- tqdm to track progress.
## architecture
- dataloader, optimizer, criterion, device, state are constructed in main, but passed to an object that runs batches.

1
data/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*.csv

View File

@ -1,4 +1,3 @@
name: ml
channels:
- pytorch
- conda-forge
@ -6,30 +5,50 @@ channels:
dependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=2_gnu
- accelerate=0.15.0=pyhd8ed1ab_0
- antlr-python-runtime=4.9.3=pyhd8ed1ab_1
- appdirs=1.4.4=pyh9f0ad1d_0
- astroid=2.11.7=py310h06a4308_0
- attrs=22.1.0=py310h06a4308_0
- black=22.6.0=py310h06a4308_0
- blas=1.0=mkl
- brotli=1.0.9=h5eee18b_7
- brotli-bin=1.0.9=h5eee18b_7
- brotlipy=0.7.0=py310h5764c6d_1005
- bzip2=1.0.8=h7f98852_4
- ca-certificates=2022.10.11=h06a4308_0
- ca-certificates=2022.12.7=ha878542_0
- certifi=2022.12.7=pyhd8ed1ab_0
- cffi=1.15.1=py310h74dc2b5_0
- charset-normalizer=2.1.1=pyhd8ed1ab_0
- click=8.0.3=pyhd3eb1b0_0
- colorama=0.4.6=pyhd8ed1ab_0
- cryptography=39.0.0=py310h65dfdc0_0
- cycler=0.11.0=pyhd3eb1b0_0
- dbus=1.13.18=hb2f20db_0
- dill=0.3.6=pyhd8ed1ab_1
- docker-pycreds=0.4.0=py_0
- einops=0.4.1=pyhd8ed1ab_0
- expat=2.4.9=h6a678d5_0
- fontconfig=2.13.1=h6c09931_0
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.12.1=h4a9f257_0
- giflib=5.2.1=h7b6447c_0
- gitdb=4.0.10=pyhd8ed1ab_0
- gitpython=3.1.30=pyhd8ed1ab_0
- glib=2.69.1=h4ff587b_1
- gst-plugins-base=1.14.0=h8213a91_2
- gstreamer=1.14.0=h28cd5cc_2
- hydra-core=1.3.1=pyhd8ed1ab_0
- icu=58.2=he6710b0_3
- idna=3.4=pyhd8ed1ab_0
- importlib_resources=5.10.2=pyhd8ed1ab_0
- iniconfig=1.1.1=pyhd3eb1b0_0
- intel-openmp=2021.4.0=h06a4308_3561
- isort=5.9.3=pyhd3eb1b0_0
- jpeg=9e=h7f8727e_0
- kiwisolver=1.4.2=py310h295c915_0
- krb5=1.19.2=hac12032_0
- lazy-object-proxy=1.6.0=py310h7f8727e_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.39=hc81fddc_0
- lerc=3.0=h295c915_0
@ -50,6 +69,7 @@ dependencies:
- libopenblas=0.3.21=pthreads_h78a6416_3
- libpng=1.6.37=hbc83047_0
- libpq=12.9=h16c4e8d_3
- libprotobuf=3.20.1=h4ff587b_0
- libstdcxx-ng=12.2.0=h46fd767_19
- libtiff=4.4.0=hecacb30_0
- libuuid=1.0.3=h7f8727e_2
@ -62,6 +82,7 @@ dependencies:
- lz4-c=1.9.3=h295c915_1
- matplotlib=3.5.2=py310h06a4308_0
- matplotlib-base=3.5.2=py310hf590b9c_0
- mccabe=0.7.0=pyhd3eb1b0_0
- mkl=2021.4.0=h06a4308_640
- mkl-service=2.4.0=py310h7f8727e_0
- mkl_fft=1.3.1=py310hd6ae3a3_0
@ -73,39 +94,62 @@ dependencies:
- nss=3.74=h0370c37_0
- numpy=1.23.3=py310hd5efca6_0
- numpy-base=1.23.3=py310h8e6c178_0
- openssl=1.1.1q=h7f8727e_0
- omegaconf=2.3.0=pyhd8ed1ab_0
- openssl=1.1.1s=h0b41bf4_1
- packaging=21.3=pyhd3eb1b0_0
- pathspec=0.10.1=pyhd8ed1ab_0
- pathtools=0.1.2=py_1
- pcre=8.45=h295c915_0
- pillow=9.2.0=py310hace64e9_1
- pip=22.3=pyhd8ed1ab_0
- platformdirs=2.5.2=pyhd8ed1ab_1
- pluggy=1.0.0=py310h06a4308_1
- ply=3.11=py310h06a4308_0
- protobuf=3.20.1=py310h295c915_0
- psutil=5.9.4=py310h5764c6d_0
- py=1.11.0=pyhd3eb1b0_0
- pycparser=2.21=pyhd8ed1ab_0
- pylint=2.14.5=py310h06a4308_0
- pyopenssl=23.0.0=pyhd8ed1ab_0
- pyparsing=3.0.9=py310h06a4308_0
- pyqt=5.15.7=py310h6a678d5_1
- pysocks=1.7.1=pyha2e5f31_6
- pytest=7.1.2=py310h06a4308_0
- python=3.10.6=haa1d7c7_1
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-dotenv=0.21.0=py310h06a4308_0
- python_abi=3.10=2_cp310
- pytorch=1.13.0=py3.10_cpu_0
- pytorch-mutex=1.0=cpu
- pyyaml=6.0=py310h5764c6d_5
- qt-main=5.15.2=h327a75a_7
- qt-webengine=5.15.9=hd2b0992_4
- qtwebkit=5.212=h4eab89a_4
- readline=8.1.2=h0f457ee_0
- requests=2.28.2=pyhd8ed1ab_0
- sentry-sdk=1.14.0=pyhd8ed1ab_0
- setproctitle=1.3.2=py310h5764c6d_1
- setuptools=65.5.0=pyhd8ed1ab_0
- sip=6.6.2=py310h6a678d5_0
- six=1.16.0=pyhd3eb1b0_1
- smmap=3.0.5=pyh44b312d_0
- sqlite=3.39.3=h5082296_0
- tk=8.6.12=h1ccaba5_0
- toml=0.10.2=pyhd3eb1b0_0
- tomli=2.0.1=py310h06a4308_0
- tomlkit=0.11.1=py310h06a4308_0
- tornado=6.2=py310h5eee18b_0
- tqdm=4.64.1=pyhd8ed1ab_0
- typing_extensions=4.3.0=py310h06a4308_0
- tzdata=2022e=h191b570_0
- urllib3=1.26.14=pyhd8ed1ab_0
- wandb=0.13.9=pyhd8ed1ab_0
- wheel=0.37.1=pyhd8ed1ab_0
- wrapt=1.14.1=py310h5eee18b_0
- xz=5.2.6=h166bdaf_0
- yaml=0.2.5=h7f98852_2
- zipp=3.11.0=pyhd8ed1ab_0
- zlib=1.2.13=h5eee18b_0
- zstd=1.5.2=ha4553b6_0
- pip:
- pyqt5-sip==12.11.0
prefix: /home/personal/Dev/conda/envs/ml
- pyqt5-sip==12.11.0

View File

@ -4,3 +4,5 @@ lr: 2e-4
batch_size: 16
num_workers: 0
device: "cpu"
epochs: 4
dev_after: 20

111
src/logger.py Normal file
View File

@ -0,0 +1,111 @@
from tkinter import W
import torch
import wandb
import numpy as np
from PIL import Image
from einops import rearrange
from typing import Protocol, Tuple, Optional
class Logger(Protocol):
def metrics(self, metrics: dict, epoch: int):
"""loss etc."""
def hyperparameters(self, hyperparameters: dict):
"""model states"""
def predictions(self, predictions: dict):
"""inference time stuff"""
def images(self, images: np.ndarray):
"""log images"""
class WandbLogger:
def __init__(self, project: str, entity: str, name: Optional[str], notes: str):
self.project = project
self.entity = entity
self.notes = notes
self.experiment = wandb.init(project=project, entity=entity, notes=notes)
self.experiment.name = name
self.data_dict = {}
def metrics(self, metrics: dict):
"""loss etc."""
self.data_dict.update(metrics)
def hyperparameters(self, hyperparameters: dict):
"""model states"""
self.experiment.config.update(hyperparameters, allow_val_change=True)
def predictions(self, predictions: dict):
"""inference time stuff"""
def image(self, image: dict):
"""log images to wandb"""
self.data_dict.update({'Generate Image' : image})
def video(self, images: str, title: str):
"""log images to wandb"""
images = np.uint8(rearrange(images, 't b c h w -> b t c h w'))
self.data_dict.update({f"{title}": wandb.Video(images, fps=20)})
def flush(self):
self.experiment.log(self.data_dict)
self.data_dict = {}
class DebugLogger:
def __init__(self, project: str, entity: str, name: str, notes: str):
self.project = project
self.entity = entity
self.name = name
self.notes = notes
def metrics(self, metrics: dict, epoch: int = None):
"""
loss etc.
"""
print(f"metrics: {metrics}")
def hyperparameters(self, hyperparameters: dict):
"""
model states
"""
print(f"hyperparameters: {hyperparameters}")
def predictions(self, predictions: dict):
"""
inference time stuff
"""
class Checkpoint:
def __init__(self, checkpoint_path):
self.checkpoint_path = checkpoint_path
def load(self) -> Tuple:
checkpoint = torch.load(self.checkpoint_path)
model = checkpoint["model"]
optimizer = checkpoint["optimizer"]
epoch = checkpoint["epoch"]
loss = checkpoint["loss"]
return (model, optimizer, epoch, loss)
def save(self, model: torch.nn.Module, optimizer, epoch, loss):
checkpoint = {
"model": model,
"optimizer": optimizer,
"epoch": epoch,
"loss": loss,
}
import random
import string
name = "".join(random.choices(string.ascii_letters, k=10)) + ".tar"
torch.save(checkpoint, f"{name}")

View File

@ -3,7 +3,17 @@ main class for building a DL pipeline.
"""
from batch import Batch
"""
the main entry point for training a model
coordinates:
- datasets
- dataloaders
- runner
"""
from runner import Runner
from model.linear import DNN
from model.cnn import VGG16, VGG11
from data import MnistDataset
@ -11,7 +21,6 @@ from utils import Stage
import torch
from pathlib import Path
from collate import channel_to_batch
import hydra
from omegaconf import DictConfig
@ -24,13 +33,24 @@ def train(config: DictConfig):
batch_size = config.batch_size
num_workers = config.num_workers
device = config.device
epochs = config.epochs
path = Path(config.app_dir) / "storage/mnist_train.csv"
trainset = MnistDataset(path=path)
train_path = Path(config.app_dir) / "data/mnist_train.csv"
trainset = MnistDataset(path=train_path)
dev_path = Path(config.app_dir) / "data/mnist_test.csv"
devset = MnistDataset(path=dev_path)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
# collate_fn=channel_to_batch,
)
devloader = torch.utils.data.DataLoader(
devset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
# collate_fn=channel_to_batch,
@ -38,7 +58,7 @@ def train(config: DictConfig):
model = VGG11(in_channels=1, num_classes=10)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
batch = Batch(
train_runner = Runner(
stage=Stage.TRAIN,
model=model,
device=torch.device(device),
@ -47,10 +67,22 @@ def train(config: DictConfig):
optimizer=optimizer,
config=config,
)
log = batch.run(
"Run run run run. Run run run away. Oh Oh oH OHHHHHHH yayayayayayayayaya! - David Byrne"
dev_runner = Runner(
stage=Stage.DEV,
model=model,
device=torch.device(device),
loader=devloader,
criterion=criterion,
optimizer=optimizer,
config=config,
)
for epoch in range(epochs):
if epoch % config.dev_after == 0:
dev_log = dev_runner.run("dev epoch")
else:
train_log = train_runner.run("train epoch")
if __name__ == "__main__":
train()

View File

@ -1,3 +1,6 @@
"""
runner for training and valdating
"""
import torch
from torch import nn
from torch import optim
@ -8,7 +11,7 @@ from utils import Stage
from omegaconf import DictConfig
class Batch:
class Runner:
def __init__(
self,
stage: Stage,
@ -34,8 +37,7 @@ class Batch:
self.model.train()
if self.config.debug:
breakpoint()
epoch = 0
for epoch, (x, y) in enumerate(tqdm(self.loader, desc=desc)):
for batch, (x, y) in enumerate(tqdm(self.loader, desc=desc)):
self.optimizer.zero_grad()
loss = self._run_batch((x, y))
loss.backward() # Send loss backwards to accumulate gradients