71 lines
1.9 KiB
Python
71 lines
1.9 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch import optim
|
|
from torch.utils.data import DataLoader
|
|
from data import FashionDataset
|
|
from tqdm import tqdm
|
|
from utils import Stage
|
|
|
|
|
|
class Batch:
|
|
def __init__(
|
|
self,
|
|
stage: Stage,
|
|
model: nn.Module,
|
|
device,
|
|
loader: DataLoader,
|
|
optimizer: optim.Optimizer,
|
|
criterion: nn.Module,
|
|
):
|
|
"""todo"""
|
|
self.stage = stage
|
|
self.device = device
|
|
self.model = model.to(device)
|
|
self.loader = loader
|
|
self.criterion = criterion
|
|
self.optimizer = optimizer
|
|
self.loss = 0
|
|
|
|
def run(self, desc):
|
|
self.model.train()
|
|
epoch = 0
|
|
for epoch, (x, y) in enumerate(tqdm(self.loader, desc=desc)):
|
|
self.optimizer.zero_grad()
|
|
loss = self._run_batch((x, y))
|
|
loss.backward() # Send loss backwards to accumulate gradients
|
|
self.optimizer.step() # Perform a gradient update on the weights of the mode
|
|
self.loss += loss.item()
|
|
|
|
def _run_batch(self, sample):
|
|
true_x, true_y = sample
|
|
true_x, true_y = true_x.to(self.device), true_y.to(self.device)
|
|
pred_y = self.model(true_x)
|
|
loss = self.criterion(pred_y, true_y)
|
|
return loss
|
|
|
|
|
|
def main():
|
|
model = nn.Conv2d(1, 64, 3)
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=2e-4)
|
|
path = "fashion-mnist_train.csv"
|
|
dataset = FashionDataset(path)
|
|
batch_size = 16
|
|
num_workers = 1
|
|
loader = torch.utils.data.DataLoader(
|
|
dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers
|
|
)
|
|
batch = Batch(
|
|
Stage.TRAIN,
|
|
device=torch.device("cpu"),
|
|
model=model,
|
|
criterion=criterion,
|
|
optimizer=optimizer,
|
|
loader=loader,
|
|
)
|
|
batch.run("test")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|