ottertune/server/analysis/gpr/gprc.py

49 lines
1.7 KiB
Python
Raw Permalink Normal View History

2019-11-01 12:04:42 -07:00
#
# OtterTune - analysis/gprc.py
#
# Copyright (c) 2017-18, Carnegie Mellon University Database Group
#
# Author: Dana Van Aken
from __future__ import absolute_import
import tensorflow as tf
from gpflow import settings
from gpflow.decors import autoflow, name_scope, params_as_tensors
from gpflow.models import GPR
class GPRC(GPR):
def __init__(self, X, Y, kern, mean_function=None, **kwargs):
super(GPRC, self).__init__(X, Y, kern, mean_function, **kwargs)
self.cholesky = None
self.alpha = None
@autoflow()
def _compute_cache(self):
K = self.kern.K(self.X) + tf.eye(tf.shape(self.X)[0], dtype=settings.float_type) * self.likelihood.variance
L = tf.cholesky(K, name='gp_cholesky')
V = tf.matrix_triangular_solve(L, self.Y - self.mean_function(self.X), name='gp_alpha')
return L, V
def update_cache(self):
self.cholesky, self.alpha = self._compute_cache()
@name_scope('predict')
@params_as_tensors
def _build_predict(self, Xnew, full_cov=False):
if self.cholesky is None:
self.update_cache()
Kx = self.kern.K(self.X, Xnew)
A = tf.matrix_triangular_solve(self.cholesky, Kx, lower=True)
fmean = tf.matmul(A, self.alpha, transpose_a=True) + self.mean_function(Xnew)
if full_cov:
fvar = self.kern.K(Xnew) - tf.matmul(A, A, transpose_a=True)
shape = tf.stack([1, 1, tf.shape(self.Y)[1]])
fvar = tf.tile(tf.expand_dims(fvar, 2), shape)
else:
fvar = self.kern.Kdiag(Xnew) - tf.reduce_sum(tf.square(A), 0)
fvar = tf.tile(tf.reshape(fvar, (-1, 1)), [1, tf.shape(self.Y)[1]])
2019-12-04 20:59:18 -08:00
return fmean, fvar, self.kern.variance, self.kern.lengthscales, self.likelihood.variance