simplify ddpg
This commit is contained in:
parent
336221d886
commit
21f4f40b88
|
@ -8,14 +8,9 @@
|
||||||
# deep reinforcement learning." Proceedings of the 2019 International Conference
|
# deep reinforcement learning." Proceedings of the 2019 International Conference
|
||||||
# on Management of Data. ACM, 2019
|
# on Management of Data. ACM, 2019
|
||||||
|
|
||||||
import os
|
|
||||||
import pickle
|
import pickle
|
||||||
import math
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch.nn import init, Parameter
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torch.optim as optimizer
|
import torch.optim as optimizer
|
||||||
from torch.autograd import Variable
|
from torch.autograd import Variable
|
||||||
|
|
||||||
|
@ -26,68 +21,9 @@ from analysis.util import get_analysis_logger
|
||||||
LOG = get_analysis_logger(__name__)
|
LOG = get_analysis_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
# code from https://github.com/Kaixhin/NoisyNet-A3C/blob/master/model.py
|
|
||||||
class NoisyLinear(nn.Linear):
|
|
||||||
def __init__(self, in_features, out_features, sigma_init=0.05, bias=True):
|
|
||||||
super(NoisyLinear, self).__init__(in_features, out_features, bias=True)
|
|
||||||
# reuse self.weight and self.bias
|
|
||||||
self.sigma_init = sigma_init
|
|
||||||
self.sigma_weight = Parameter(torch.Tensor(out_features, in_features))
|
|
||||||
self.sigma_bias = Parameter(torch.Tensor(out_features))
|
|
||||||
self.epsilon_weight = None
|
|
||||||
self.epsilon_bias = None
|
|
||||||
self.register_buffer('epsilon_weight', torch.zeros(out_features, in_features))
|
|
||||||
self.register_buffer('epsilon_bias', torch.zeros(out_features))
|
|
||||||
self.reset_parameters()
|
|
||||||
|
|
||||||
def reset_parameters(self):
|
|
||||||
# Only init after all params added (otherwise super().__init__() fails)
|
|
||||||
if hasattr(self, 'sigma_weight'):
|
|
||||||
init.uniform(self.weight, -math.sqrt(3 / self.in_features),
|
|
||||||
math.sqrt(3 / self.in_features))
|
|
||||||
init.uniform(self.bias, -math.sqrt(3 / self.in_features),
|
|
||||||
math.sqrt(3 / self.in_features))
|
|
||||||
init.constant(self.sigma_weight, self.sigma_init)
|
|
||||||
init.constant(self.sigma_bias, self.sigma_init)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return F.linear(x, self.weight + self.sigma_weight * Variable(self.epsilon_weight),
|
|
||||||
self.bias + self.sigma_bias * Variable(self.epsilon_bias))
|
|
||||||
|
|
||||||
def sample_noise(self):
|
|
||||||
self.epsilon_weight = torch.randn(self.out_features, self.in_features)
|
|
||||||
self.epsilon_bias = torch.randn(self.out_features)
|
|
||||||
|
|
||||||
def remove_noise(self):
|
|
||||||
self.epsilon_weight = torch.zeros(self.out_features, self.in_features)
|
|
||||||
self.epsilon_bias = torch.zeros(self.out_features)
|
|
||||||
|
|
||||||
|
|
||||||
class Normalizer(object):
|
|
||||||
|
|
||||||
def __init__(self, mean, variance):
|
|
||||||
if isinstance(mean, list):
|
|
||||||
mean = np.array(mean)
|
|
||||||
if isinstance(variance, list):
|
|
||||||
variance = np.array(variance)
|
|
||||||
self.mean = mean
|
|
||||||
self.std = np.sqrt(variance + 0.00001)
|
|
||||||
|
|
||||||
def normalize(self, x):
|
|
||||||
if isinstance(x, list):
|
|
||||||
x = np.array(x)
|
|
||||||
x = x - self.mean
|
|
||||||
x = x / self.std
|
|
||||||
|
|
||||||
return Variable(torch.FloatTensor(x))
|
|
||||||
|
|
||||||
def __call__(self, x, *args, **kwargs):
|
|
||||||
return self.normalize(x)
|
|
||||||
|
|
||||||
|
|
||||||
class Actor(nn.Module):
|
class Actor(nn.Module):
|
||||||
|
|
||||||
def __init__(self, n_states, n_actions, noisy=False):
|
def __init__(self, n_states, n_actions):
|
||||||
super(Actor, self).__init__()
|
super(Actor, self).__init__()
|
||||||
self.layers = nn.Sequential(
|
self.layers = nn.Sequential(
|
||||||
nn.Linear(n_states, 128),
|
nn.Linear(n_states, 128),
|
||||||
|
@ -100,13 +36,11 @@ class Actor(nn.Module):
|
||||||
nn.Linear(128, 64),
|
nn.Linear(128, 64),
|
||||||
nn.Tanh(),
|
nn.Tanh(),
|
||||||
nn.BatchNorm1d(64),
|
nn.BatchNorm1d(64),
|
||||||
|
nn.Linear(64, n_actions)
|
||||||
)
|
)
|
||||||
if noisy:
|
# This act layer maps the output to (0, 1)
|
||||||
self.out = NoisyLinear(64, n_actions)
|
|
||||||
else:
|
|
||||||
self.out = nn.Linear(64, n_actions)
|
|
||||||
self._init_weights()
|
|
||||||
self.act = nn.Sigmoid()
|
self.act = nn.Sigmoid()
|
||||||
|
self._init_weights()
|
||||||
|
|
||||||
def _init_weights(self):
|
def _init_weights(self):
|
||||||
|
|
||||||
|
@ -115,13 +49,10 @@ class Actor(nn.Module):
|
||||||
m.weight.data.normal_(0.0, 1e-2)
|
m.weight.data.normal_(0.0, 1e-2)
|
||||||
m.bias.data.uniform_(-0.1, 0.1)
|
m.bias.data.uniform_(-0.1, 0.1)
|
||||||
|
|
||||||
def sample_noise(self):
|
def forward(self, states): # pylint: disable=arguments-differ
|
||||||
self.out.sample_noise()
|
|
||||||
|
|
||||||
def forward(self, x): # pylint: disable=arguments-differ
|
actions = self.act(self.layers(states))
|
||||||
|
return actions
|
||||||
out = self.act(self.out(self.layers(x)))
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
class Critic(nn.Module):
|
class Critic(nn.Module):
|
||||||
|
@ -156,11 +87,11 @@ class Critic(nn.Module):
|
||||||
m.weight.data.normal_(0.0, 1e-2)
|
m.weight.data.normal_(0.0, 1e-2)
|
||||||
m.bias.data.uniform_(-0.1, 0.1)
|
m.bias.data.uniform_(-0.1, 0.1)
|
||||||
|
|
||||||
def forward(self, x, action): # pylint: disable=arguments-differ
|
def forward(self, states, actions): # pylint: disable=arguments-differ
|
||||||
x = self.act(self.state_input(x))
|
states = self.act(self.state_input(states))
|
||||||
action = self.act(self.action_input(action))
|
actions = self.act(self.action_input(actions))
|
||||||
|
|
||||||
_input = torch.cat([x, action], dim=1)
|
_input = torch.cat([states, actions], dim=1)
|
||||||
value = self.layers(_input)
|
value = self.layers(_input)
|
||||||
return value
|
return value
|
||||||
|
|
||||||
|
@ -168,8 +99,7 @@ class Critic(nn.Module):
|
||||||
class DDPG(object):
|
class DDPG(object):
|
||||||
|
|
||||||
def __init__(self, n_states, n_actions, model_name='', alr=0.001, clr=0.001,
|
def __init__(self, n_states, n_actions, model_name='', alr=0.001, clr=0.001,
|
||||||
gamma=0.9, batch_size=32, tau=0.002, memory_size=100000,
|
gamma=0.9, batch_size=32, tau=0.002, memory_size=100000):
|
||||||
ouprocess=True, mean_var_path=None, supervised=False):
|
|
||||||
self.n_states = n_states
|
self.n_states = n_states
|
||||||
self.n_actions = n_actions
|
self.n_actions = n_actions
|
||||||
self.alr = alr
|
self.alr = alr
|
||||||
|
@ -178,25 +108,7 @@ class DDPG(object):
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.gamma = gamma
|
self.gamma = gamma
|
||||||
self.tau = tau
|
self.tau = tau
|
||||||
self.ouprocess = ouprocess
|
|
||||||
|
|
||||||
if mean_var_path is None:
|
|
||||||
mean = np.zeros(n_states)
|
|
||||||
var = np.zeros(n_states)
|
|
||||||
elif not os.path.exists(mean_var_path):
|
|
||||||
mean = np.zeros(n_states)
|
|
||||||
var = np.zeros(n_states)
|
|
||||||
else:
|
|
||||||
with open(mean_var_path, 'rb') as f:
|
|
||||||
mean, var = pickle.load(f)
|
|
||||||
|
|
||||||
self.normalizer = Normalizer(mean, var)
|
|
||||||
|
|
||||||
if supervised:
|
|
||||||
self._build_actor()
|
|
||||||
LOG.info("Supervised Learning Initialized")
|
|
||||||
else:
|
|
||||||
# Build Network
|
|
||||||
self._build_network()
|
self._build_network()
|
||||||
|
|
||||||
self.replay_memory = PrioritizedReplayMemory(capacity=memory_size)
|
self.replay_memory = PrioritizedReplayMemory(capacity=memory_size)
|
||||||
|
@ -206,30 +118,12 @@ class DDPG(object):
|
||||||
def totensor(x):
|
def totensor(x):
|
||||||
return Variable(torch.FloatTensor(x))
|
return Variable(torch.FloatTensor(x))
|
||||||
|
|
||||||
def _build_actor(self):
|
|
||||||
if self.ouprocess:
|
|
||||||
noisy = False
|
|
||||||
else:
|
|
||||||
noisy = True
|
|
||||||
self.actor = Actor(self.n_states, self.n_actions, noisy=noisy)
|
|
||||||
self.actor_criterion = nn.MSELoss()
|
|
||||||
self.actor_optimizer = optimizer.Adam(lr=self.alr, params=self.actor.parameters())
|
|
||||||
|
|
||||||
def _build_network(self):
|
def _build_network(self):
|
||||||
if self.ouprocess:
|
self.actor = Actor(self.n_states, self.n_actions)
|
||||||
noisy = False
|
|
||||||
else:
|
|
||||||
noisy = True
|
|
||||||
self.actor = Actor(self.n_states, self.n_actions, noisy=noisy)
|
|
||||||
self.target_actor = Actor(self.n_states, self.n_actions)
|
self.target_actor = Actor(self.n_states, self.n_actions)
|
||||||
self.critic = Critic(self.n_states, self.n_actions)
|
self.critic = Critic(self.n_states, self.n_actions)
|
||||||
self.target_critic = Critic(self.n_states, self.n_actions)
|
self.target_critic = Critic(self.n_states, self.n_actions)
|
||||||
|
|
||||||
# if model params are provided, load them
|
|
||||||
if len(self.model_name):
|
|
||||||
self.load_model(model_name=self.model_name)
|
|
||||||
LOG.info("Loading model from file: %s", self.model_name)
|
|
||||||
|
|
||||||
# Copy actor's parameters
|
# Copy actor's parameters
|
||||||
self._update_target(self.target_actor, self.actor, tau=1.0)
|
self._update_target(self.target_actor, self.actor, tau=1.0)
|
||||||
|
|
||||||
|
@ -249,64 +143,57 @@ class DDPG(object):
|
||||||
target_param.data * (1 - tau) + param.data * tau
|
target_param.data * (1 - tau) + param.data * tau
|
||||||
)
|
)
|
||||||
|
|
||||||
def reset(self, sigma):
|
def reset(self, sigma, theta):
|
||||||
self.noise.reset(sigma)
|
self.noise.reset(sigma, theta)
|
||||||
|
|
||||||
def _sample_batch(self):
|
def _sample_batch(self):
|
||||||
batch, idx = self.replay_memory.sample(self.batch_size)
|
batch, idx = self.replay_memory.sample(self.batch_size)
|
||||||
# batch = self.replay_memory.sample(self.batch_size)
|
|
||||||
states = list(map(lambda x: x[0].tolist(), batch)) # pylint: disable=W0141
|
states = list(map(lambda x: x[0].tolist(), batch)) # pylint: disable=W0141
|
||||||
next_states = list(map(lambda x: x[3].tolist(), batch)) # pylint: disable=W0141
|
|
||||||
actions = list(map(lambda x: x[1].tolist(), batch)) # pylint: disable=W0141
|
actions = list(map(lambda x: x[1].tolist(), batch)) # pylint: disable=W0141
|
||||||
rewards = list(map(lambda x: x[2], batch)) # pylint: disable=W0141
|
rewards = list(map(lambda x: x[2], batch)) # pylint: disable=W0141
|
||||||
terminates = list(map(lambda x: x[4], batch)) # pylint: disable=W0141
|
next_states = list(map(lambda x: x[3].tolist(), batch)) # pylint: disable=W0141
|
||||||
|
|
||||||
return idx, states, next_states, actions, rewards, terminates
|
return idx, states, next_states, actions, rewards
|
||||||
|
|
||||||
def add_sample(self, state, action, reward, next_state, terminate):
|
def add_sample(self, state, action, reward, next_state):
|
||||||
self.critic.eval()
|
self.critic.eval()
|
||||||
self.actor.eval()
|
self.actor.eval()
|
||||||
self.target_critic.eval()
|
self.target_critic.eval()
|
||||||
self.target_actor.eval()
|
self.target_actor.eval()
|
||||||
batch_state = self.normalizer([state.tolist()])
|
batch_state = self.totensor([state.tolist()])
|
||||||
batch_next_state = self.normalizer([next_state.tolist()])
|
batch_next_state = self.totensor([next_state.tolist()])
|
||||||
current_value = self.critic(batch_state, self.totensor([action.tolist()]))
|
current_value = self.critic(batch_state, self.totensor([action.tolist()]))
|
||||||
target_action = self.target_actor(batch_next_state)
|
target_action = self.target_actor(batch_next_state)
|
||||||
target_value = self.totensor([reward]) \
|
target_value = self.totensor([reward]) \
|
||||||
+ self.totensor([0 if x else 1 for x in [terminate]]) \
|
+ self.target_critic(batch_next_state, target_action) * self.gamma
|
||||||
* self.target_critic(batch_next_state, target_action) * self.gamma
|
|
||||||
error = float(torch.abs(current_value - target_value).data.numpy()[0])
|
error = float(torch.abs(current_value - target_value).data.numpy()[0])
|
||||||
|
|
||||||
self.target_actor.train()
|
self.target_actor.train()
|
||||||
self.actor.train()
|
self.actor.train()
|
||||||
self.critic.train()
|
self.critic.train()
|
||||||
self.target_critic.train()
|
self.target_critic.train()
|
||||||
self.replay_memory.add(error, (state, action, reward, next_state, terminate))
|
self.replay_memory.add(error, (state, action, reward, next_state))
|
||||||
|
|
||||||
def update(self):
|
def update(self):
|
||||||
idxs, states, next_states, actions, rewards, terminates = self._sample_batch()
|
idxs, states, next_states, actions, rewards = self._sample_batch()
|
||||||
batch_states = self.normalizer(states)
|
batch_states = self.totensor(states)
|
||||||
batch_next_states = self.normalizer(next_states)
|
batch_next_states = self.totensor(next_states)
|
||||||
batch_actions = self.totensor(actions)
|
batch_actions = self.totensor(actions)
|
||||||
batch_rewards = self.totensor(rewards)
|
batch_rewards = self.totensor(rewards)
|
||||||
mask = [0 if x else 1 for x in terminates]
|
|
||||||
mask = self.totensor(mask)
|
|
||||||
|
|
||||||
target_next_actions = self.target_actor(batch_next_states).detach()
|
target_next_actions = self.target_actor(batch_next_states).detach()
|
||||||
target_next_value = self.target_critic(batch_next_states, target_next_actions).detach()
|
target_next_value = self.target_critic(batch_next_states, target_next_actions).detach()
|
||||||
current_value = self.critic(batch_states, batch_actions)
|
current_value = self.critic(batch_states, batch_actions)
|
||||||
# TODO (dongshen): This clause is the original clause, but it has some mistakes
|
|
||||||
# next_value = batch_rewards + mask * target_next_value * self.gamma
|
|
||||||
# Since terminate is always false, I remove the mask here.
|
|
||||||
next_value = batch_rewards + target_next_value * self.gamma
|
next_value = batch_rewards + target_next_value * self.gamma
|
||||||
# Update Critic
|
|
||||||
|
|
||||||
# update prioritized memory
|
# update prioritized memory
|
||||||
|
if isinstance(self.replay_memory, PrioritizedReplayMemory):
|
||||||
error = torch.abs(current_value - next_value).data.numpy()
|
error = torch.abs(current_value - next_value).data.numpy()
|
||||||
for i in range(self.batch_size):
|
for i in range(self.batch_size):
|
||||||
idx = idxs[i]
|
idx = idxs[i]
|
||||||
self.replay_memory.update(idx, error[i][0])
|
self.replay_memory.update(idx, error[i][0])
|
||||||
|
|
||||||
|
# Update Critic
|
||||||
loss = self.loss_criterion(current_value, next_value)
|
loss = self.loss_criterion(current_value, next_value)
|
||||||
self.critic_optimizer.zero_grad()
|
self.critic_optimizer.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
@ -327,101 +214,17 @@ class DDPG(object):
|
||||||
|
|
||||||
return loss.data, policy_loss.data
|
return loss.data, policy_loss.data
|
||||||
|
|
||||||
def choose_action(self, x):
|
def choose_action(self, states):
|
||||||
""" Select Action according to the current state
|
|
||||||
Args:
|
|
||||||
x: np.array, current state
|
|
||||||
"""
|
|
||||||
self.actor.eval()
|
self.actor.eval()
|
||||||
act = self.actor(self.normalizer([x.tolist()])).squeeze(0)
|
act = self.actor(self.totensor([states.tolist()])).squeeze(0)
|
||||||
self.actor.train()
|
self.actor.train()
|
||||||
action = act.data.numpy()
|
action = act.data.numpy()
|
||||||
if self.ouprocess:
|
|
||||||
action += self.noise.noise()
|
action += self.noise.noise()
|
||||||
return action.clip(0, 1)
|
return action.clip(0, 1)
|
||||||
|
|
||||||
def sample_noise(self):
|
|
||||||
self.actor.sample_noise()
|
|
||||||
|
|
||||||
def load_model(self, model_name):
|
|
||||||
""" Load Torch Model from files
|
|
||||||
Args:
|
|
||||||
model_name: str, model path
|
|
||||||
"""
|
|
||||||
self.actor.load_state_dict(
|
|
||||||
torch.load('{}_actor.pth'.format(model_name))
|
|
||||||
)
|
|
||||||
self.critic.load_state_dict(
|
|
||||||
torch.load('{}_critic.pth'.format(model_name))
|
|
||||||
)
|
|
||||||
|
|
||||||
def save_model(self, model_name):
|
|
||||||
""" Save Torch Model from files
|
|
||||||
Args:
|
|
||||||
model_dir: str, model dir
|
|
||||||
title: str, model name
|
|
||||||
"""
|
|
||||||
torch.save(
|
|
||||||
self.actor.state_dict(),
|
|
||||||
'{}_actor.pth'.format(model_name)
|
|
||||||
)
|
|
||||||
|
|
||||||
torch.save(
|
|
||||||
self.critic.state_dict(),
|
|
||||||
'{}_critic.pth'.format(model_name)
|
|
||||||
)
|
|
||||||
|
|
||||||
def set_model(self, actor_dict, critic_dict):
|
def set_model(self, actor_dict, critic_dict):
|
||||||
self.actor.load_state_dict(pickle.loads(actor_dict))
|
self.actor.load_state_dict(pickle.loads(actor_dict))
|
||||||
self.critic.load_state_dict(pickle.loads(critic_dict))
|
self.critic.load_state_dict(pickle.loads(critic_dict))
|
||||||
|
|
||||||
def get_model(self):
|
def get_model(self):
|
||||||
return pickle.dumps(self.actor.state_dict()), pickle.dumps(self.critic.state_dict())
|
return pickle.dumps(self.actor.state_dict()), pickle.dumps(self.critic.state_dict())
|
||||||
|
|
||||||
def save_actor(self, path):
|
|
||||||
""" save actor network
|
|
||||||
Args:
|
|
||||||
path, str, path to save
|
|
||||||
"""
|
|
||||||
torch.save(
|
|
||||||
self.actor.state_dict(),
|
|
||||||
path
|
|
||||||
)
|
|
||||||
|
|
||||||
def load_actor(self, path):
|
|
||||||
""" load actor network
|
|
||||||
Args:
|
|
||||||
path, str, path to load
|
|
||||||
"""
|
|
||||||
self.actor.load_state_dict(
|
|
||||||
torch.load(path)
|
|
||||||
)
|
|
||||||
|
|
||||||
def train_actor(self, batch_data, is_train=True):
|
|
||||||
""" Train the actor separately with data
|
|
||||||
Args:
|
|
||||||
batch_data: tuple, (states, actions)
|
|
||||||
is_train: bool
|
|
||||||
Return:
|
|
||||||
_loss: float, training loss
|
|
||||||
"""
|
|
||||||
states, action = batch_data
|
|
||||||
|
|
||||||
if is_train:
|
|
||||||
self.actor.train()
|
|
||||||
pred = self.actor(self.normalizer(states))
|
|
||||||
action = self.totensor(action)
|
|
||||||
|
|
||||||
_loss = self.actor_criterion(pred, action)
|
|
||||||
|
|
||||||
self.actor_optimizer.zero_grad()
|
|
||||||
_loss.backward()
|
|
||||||
self.actor_optimizer.step()
|
|
||||||
|
|
||||||
else:
|
|
||||||
self.actor.eval()
|
|
||||||
pred = self.actor(self.normalizer(states))
|
|
||||||
action = self.totensor(action)
|
|
||||||
_loss = self.actor_criterion(pred, action)
|
|
||||||
|
|
||||||
return _loss.data[0]
|
|
||||||
|
|
|
@ -21,10 +21,12 @@ class OUProcess(object):
|
||||||
self.sigma = sigma
|
self.sigma = sigma
|
||||||
self.current_value = np.ones(self.n_actions) * self.mu
|
self.current_value = np.ones(self.n_actions) * self.mu
|
||||||
|
|
||||||
def reset(self, sigma=0):
|
def reset(self, sigma=0, theta=0):
|
||||||
self.current_value = np.ones(self.n_actions) * self.mu
|
self.current_value = np.ones(self.n_actions) * self.mu
|
||||||
if sigma != 0:
|
if sigma != 0:
|
||||||
self.sigma = sigma
|
self.sigma = sigma
|
||||||
|
if theta != 0:
|
||||||
|
self.theta = theta
|
||||||
|
|
||||||
def noise(self):
|
def noise(self):
|
||||||
x = self.current_value
|
x = self.current_value
|
||||||
|
|
|
@ -32,8 +32,7 @@ class TestDDPG(unittest.TestCase):
|
||||||
metric_data = np.array([random.random()])
|
metric_data = np.array([random.random()])
|
||||||
reward = 1.0 if (prev_metric_data[0] - 0.5) * (knob_data[0] - 0.5) > 0 else 0.0
|
reward = 1.0 if (prev_metric_data[0] - 0.5) * (knob_data[0] - 0.5) > 0 else 0.0
|
||||||
reward = np.array([reward])
|
reward = np.array([reward])
|
||||||
cls.ddpg.add_sample(prev_metric_data, knob_data, reward, metric_data, False)
|
cls.ddpg.add_sample(prev_metric_data, knob_data, reward, metric_data)
|
||||||
if len(cls.ddpg.replay_memory) > 32:
|
|
||||||
cls.ddpg.update()
|
cls.ddpg.update()
|
||||||
|
|
||||||
def test_ddpg_ypreds(self):
|
def test_ddpg_ypreds(self):
|
||||||
|
|
|
@ -325,20 +325,19 @@ def train_ddpg(result_id):
|
||||||
# Calculate the reward
|
# Calculate the reward
|
||||||
objective = objective / base_objective
|
objective = objective / base_objective
|
||||||
if metric_meta[target_objective].improvement == '(less is better)':
|
if metric_meta[target_objective].improvement == '(less is better)':
|
||||||
reward = -objective * objective
|
reward = -objective
|
||||||
else:
|
else:
|
||||||
reward = objective * objective
|
reward = objective
|
||||||
LOG.info('reward: %f', reward)
|
LOG.info('reward: %f', reward)
|
||||||
|
|
||||||
# Update ddpg
|
# Update ddpg
|
||||||
ddpg = DDPG(n_actions=knob_num, n_states=metric_num, alr=ACTOR_LEARNING_RATE,
|
ddpg = DDPG(n_actions=knob_num, n_states=metric_num, alr=ACTOR_LEARNING_RATE,
|
||||||
clr=CRITIC_LEARNING_RATE, gamma=0.0, batch_size=DDPG_BATCH_SIZE, tau=0.0)
|
clr=CRITIC_LEARNING_RATE, gamma=0, batch_size=DDPG_BATCH_SIZE)
|
||||||
if session.ddpg_actor_model and session.ddpg_critic_model:
|
if session.ddpg_actor_model and session.ddpg_critic_model:
|
||||||
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
|
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
|
||||||
if session.ddpg_reply_memory:
|
if session.ddpg_reply_memory:
|
||||||
ddpg.replay_memory.set(session.ddpg_reply_memory)
|
ddpg.replay_memory.set(session.ddpg_reply_memory)
|
||||||
ddpg.add_sample(normalized_metric_data, knob_data, reward, normalized_metric_data, False)
|
ddpg.add_sample(normalized_metric_data, knob_data, reward, normalized_metric_data)
|
||||||
if len(ddpg.replay_memory) > 32:
|
|
||||||
ddpg.update()
|
ddpg.update()
|
||||||
session.ddpg_actor_model, session.ddpg_critic_model = ddpg.get_model()
|
session.ddpg_actor_model, session.ddpg_critic_model = ddpg.get_model()
|
||||||
session.ddpg_reply_memory = ddpg.replay_memory.get()
|
session.ddpg_reply_memory = ddpg.replay_memory.get()
|
||||||
|
@ -362,8 +361,7 @@ def configuration_recommendation_ddpg(result_info): # pylint: disable=invalid-n
|
||||||
knob_num = len(knob_labels)
|
knob_num = len(knob_labels)
|
||||||
metric_num = len(metric_data)
|
metric_num = len(metric_data)
|
||||||
|
|
||||||
ddpg = DDPG(n_actions=knob_num, n_states=metric_num, alr=ACTOR_LEARNING_RATE,
|
ddpg = DDPG(n_actions=knob_num, n_states=metric_num)
|
||||||
clr=CRITIC_LEARNING_RATE, gamma=0.0, batch_size=DDPG_BATCH_SIZE, tau=0.0)
|
|
||||||
if session.ddpg_actor_model is not None and session.ddpg_critic_model is not None:
|
if session.ddpg_actor_model is not None and session.ddpg_critic_model is not None:
|
||||||
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
|
ddpg.set_model(session.ddpg_actor_model, session.ddpg_critic_model)
|
||||||
if session.ddpg_reply_memory is not None:
|
if session.ddpg_reply_memory is not None:
|
||||||
|
|
Loading…
Reference in New Issue