mvp of ml pipeline.
This commit is contained in:
commit
5dab765216
|
@ -0,0 +1,2 @@
|
|||
storage/
|
||||
__pycache__/
|
|
@ -0,0 +1,8 @@
|
|||
all:
|
||||
python pipeline.py train
|
||||
|
||||
data:
|
||||
python data.py
|
||||
|
||||
batch:
|
||||
python batch.py
|
|
@ -0,0 +1,70 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
from torch import optim
|
||||
from torch.utils.data import DataLoader
|
||||
from data import FashionDataset
|
||||
from tqdm import tqdm
|
||||
from utils import Stage
|
||||
|
||||
|
||||
class Batch:
|
||||
def __init__(
|
||||
self,
|
||||
stage: Stage,
|
||||
model: nn.Module,
|
||||
device,
|
||||
loader: DataLoader,
|
||||
optimizer: optim.Optimizer,
|
||||
criterion: nn.Module,
|
||||
):
|
||||
"""todo"""
|
||||
self.stage = stage
|
||||
self.device = device
|
||||
self.model = model.to(device)
|
||||
self.loader = loader
|
||||
self.criterion = criterion
|
||||
self.optimizer = optimizer
|
||||
self.loss = 0
|
||||
|
||||
def run(self, desc):
|
||||
self.model.train()
|
||||
epoch = 0
|
||||
for epoch, (x, y) in enumerate(tqdm(self.loader, desc=desc)):
|
||||
self.optimizer.zero_grad()
|
||||
loss = self._run_batch((x, y))
|
||||
loss.backward() # Send loss backwards to accumulate gradients
|
||||
self.optimizer.step() # Perform a gradient update on the weights of the mode
|
||||
self.loss += loss.item()
|
||||
|
||||
def _run_batch(self, sample):
|
||||
true_x, true_y = sample
|
||||
true_x, true_y = true_x.to(self.device), true_y.to(self.device)
|
||||
pred_y = self.model(true_x)
|
||||
loss = self.criterion(pred_y, true_y)
|
||||
return loss
|
||||
|
||||
|
||||
def main():
|
||||
model = nn.Conv2d(1, 64, 3)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=2e-4)
|
||||
path = "fashion-mnist_train.csv"
|
||||
dataset = FashionDataset(path)
|
||||
batch_size = 16
|
||||
num_workers = 1
|
||||
loader = torch.utils.data.DataLoader(
|
||||
dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers
|
||||
)
|
||||
batch = Batch(
|
||||
Stage.TRAIN,
|
||||
device=torch.device("cpu"),
|
||||
model=model,
|
||||
criterion=criterion,
|
||||
optimizer=optimizer,
|
||||
loader=loader,
|
||||
)
|
||||
batch.run("test")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,54 @@
|
|||
from torch.utils.data import Dataset
|
||||
import numpy as np
|
||||
import einops
|
||||
import csv
|
||||
import torch
|
||||
|
||||
|
||||
class FashionDataset(Dataset):
|
||||
def __init__(self, path: str):
|
||||
self.path = path
|
||||
self.x, self.y = self.load()
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return (self.x[idx], self.y[idx])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.x)
|
||||
|
||||
def load(self):
|
||||
# opening the CSV file
|
||||
with open(self.path, mode="r") as file:
|
||||
images = list()
|
||||
classes = list()
|
||||
# reading the CSV file
|
||||
csvFile = csv.reader(file)
|
||||
# displaying the contents of the CSV file
|
||||
header = next(csvFile)
|
||||
limit = 1000
|
||||
for line in csvFile:
|
||||
if limit < 1:
|
||||
break
|
||||
classes.append(int(line[:1][0]))
|
||||
images.append([int(x) for x in line[1:]])
|
||||
limit -= 1
|
||||
classes = torch.tensor(classes, dtype=torch.long)
|
||||
images = torch.tensor(images, dtype=torch.float32)
|
||||
images = einops.rearrange(images, "n (w h) -> n w h", w=28, h=28)
|
||||
images = einops.repeat(
|
||||
images, "n w h -> n c (w r_w) (h r_h)", c=1, r_w=8, r_h=8
|
||||
)
|
||||
return (images, classes)
|
||||
|
||||
|
||||
def main():
|
||||
path = "fashion-mnist_train.csv"
|
||||
dataset = FashionDataset(path=path)
|
||||
print(f"len: {len(dataset)}")
|
||||
print(f"first shape: {dataset[0][0].shape}")
|
||||
mean = einops.reduce(dataset[:10], "n w h -> w h", "mean")
|
||||
print(f"mean shape: {mean.shape}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,152 @@
|
|||
from torch import nn
|
||||
|
||||
|
||||
# the VGG11 architecture
|
||||
class VGG11(nn.Module):
|
||||
def __init__(self, in_channels, num_classes=1000):
|
||||
super(VGG11, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.num_classes = num_classes
|
||||
|
||||
# convolutional layers
|
||||
self.conv_layers = nn.Sequential(
|
||||
nn.Conv2d(self.in_channels, 64, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
nn.Conv2d(128, 256, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
nn.Conv2d(256, 512, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(512, 512, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
nn.Conv2d(512, 512, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(512, 512, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
)
|
||||
|
||||
# fully connected linear layers
|
||||
self.linear_layers = nn.Sequential(
|
||||
nn.Linear(in_features=512 * 7 * 7, out_features=4096),
|
||||
nn.ReLU(),
|
||||
nn.Dropout2d(0.5),
|
||||
nn.Linear(in_features=4096, out_features=4096),
|
||||
nn.ReLU(),
|
||||
nn.Dropout2d(0.5),
|
||||
nn.Linear(in_features=4096, out_features=self.num_classes),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_layers(x)
|
||||
# flatten to prepare for the fully connected layers
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.linear_layers(x)
|
||||
return x
|
||||
|
||||
|
||||
class VGG16(nn.Module):
|
||||
def __init__(self, num_classes=10):
|
||||
super(VGG16, self).__init__()
|
||||
self.layer1 = nn.Sequential(
|
||||
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.layer2 = nn.Sequential(
|
||||
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
)
|
||||
self.layer3 = nn.Sequential(
|
||||
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(128),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.layer4 = nn.Sequential(
|
||||
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(128),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
)
|
||||
self.layer5 = nn.Sequential(
|
||||
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(256),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.layer6 = nn.Sequential(
|
||||
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(256),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.layer7 = nn.Sequential(
|
||||
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(256),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
)
|
||||
self.layer8 = nn.Sequential(
|
||||
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(512),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.layer9 = nn.Sequential(
|
||||
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(512),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.layer10 = nn.Sequential(
|
||||
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(512),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
)
|
||||
self.layer11 = nn.Sequential(
|
||||
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(512),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.layer12 = nn.Sequential(
|
||||
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(512),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.layer13 = nn.Sequential(
|
||||
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(512),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
)
|
||||
self.fc = nn.Sequential(
|
||||
nn.Dropout(0.5), nn.Linear(7 * 7 * 512, 4096), nn.ReLU()
|
||||
)
|
||||
self.fc1 = nn.Sequential(nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU())
|
||||
self.fc2 = nn.Sequential(nn.Linear(4096, num_classes))
|
||||
|
||||
def forward(self, x):
|
||||
out = self.layer1(x)
|
||||
out = self.layer2(out)
|
||||
out = self.layer3(out)
|
||||
out = self.layer4(out)
|
||||
out = self.layer5(out)
|
||||
out = self.layer6(out)
|
||||
out = self.layer7(out)
|
||||
out = self.layer8(out)
|
||||
out = self.layer9(out)
|
||||
out = self.layer10(out)
|
||||
out = self.layer11(out)
|
||||
out = self.layer12(out)
|
||||
out = self.layer13(out)
|
||||
out = out.reshape(out.size(0), -1)
|
||||
out = self.fc(out)
|
||||
out = self.fc1(out)
|
||||
out = self.fc2(out)
|
||||
return out
|
|
@ -0,0 +1,10 @@
|
|||
from torch import nn
|
||||
|
||||
|
||||
class DNN(nn.Module):
|
||||
def __init__(self, in_dim, out_dim):
|
||||
super(DNN, self).__init__()
|
||||
self.layer1 = nn.Linear(in_dim, out_dim)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer1(x)
|
|
@ -0,0 +1,158 @@
|
|||
# pytorch mlp for multiclass classification
|
||||
from numpy import vstack
|
||||
from numpy import argmax
|
||||
from pandas import read_csv
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.metrics import accuracy_score
|
||||
from torch import Tensor
|
||||
from torch.utils.data import Dataset
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import random_split
|
||||
from torch.nn import Linear
|
||||
from torch.nn import ReLU
|
||||
from torch.nn import Softmax
|
||||
from torch.nn import Module
|
||||
from torch.optim import SGD
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from torch.nn.init import kaiming_uniform_
|
||||
from torch.nn.init import xavier_uniform_
|
||||
|
||||
# dataset definition
|
||||
class CSVDataset(Dataset):
|
||||
# load the dataset
|
||||
def __init__(self, path):
|
||||
# load the csv file as a dataframe
|
||||
df = read_csv(path, header=None)
|
||||
# store the inputs and outputs
|
||||
self.X = df.values[:, :-1]
|
||||
self.y = df.values[:, -1]
|
||||
# ensure input data is floats
|
||||
self.X = self.X.astype('float32')
|
||||
# label encode target and ensure the values are floats
|
||||
self.y = LabelEncoder().fit_transform(self.y)
|
||||
|
||||
# number of rows in the dataset
|
||||
def __len__(self):
|
||||
return len(self.X)
|
||||
|
||||
# get a row at an index
|
||||
def __getitem__(self, idx):
|
||||
return [self.X[idx], self.y[idx]]
|
||||
|
||||
# get indexes for train and test rows
|
||||
def get_splits(self, n_test=0.33):
|
||||
# determine sizes
|
||||
test_size = round(n_test * len(self.X))
|
||||
train_size = len(self.X) - test_size
|
||||
# calculate the split
|
||||
return random_split(self, [train_size, test_size])
|
||||
|
||||
# model definition
|
||||
class MLP(Module):
|
||||
# define model elements
|
||||
def __init__(self, n_inputs):
|
||||
super(MLP, self).__init__()
|
||||
# input to first hidden layer
|
||||
self.hidden1 = Linear(n_inputs, 10)
|
||||
kaiming_uniform_(self.hidden1.weight, nonlinearity='relu')
|
||||
self.act1 = ReLU()
|
||||
# second hidden layer
|
||||
self.hidden2 = Linear(10, 8)
|
||||
kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
|
||||
self.act2 = ReLU()
|
||||
# third hidden layer and output
|
||||
self.hidden3 = Linear(8, 3)
|
||||
xavier_uniform_(self.hidden3.weight)
|
||||
self.act3 = Softmax(dim=1)
|
||||
|
||||
# forward propagate input
|
||||
def forward(self, X):
|
||||
# input to first hidden layer
|
||||
X = self.hidden1(X)
|
||||
X = self.act1(X)
|
||||
# second hidden layer
|
||||
X = self.hidden2(X)
|
||||
X = self.act2(X)
|
||||
# output layer
|
||||
X = self.hidden3(X)
|
||||
X = self.act3(X)
|
||||
return X
|
||||
|
||||
# prepare the dataset
|
||||
def prepare_data(path):
|
||||
# load the dataset
|
||||
dataset = CSVDataset(path)
|
||||
# calculate split
|
||||
train, test = dataset.get_splits()
|
||||
# prepare data loaders
|
||||
train_dl = DataLoader(train, batch_size=32, shuffle=True)
|
||||
test_dl = DataLoader(test, batch_size=1024, shuffle=False)
|
||||
return train_dl, test_dl
|
||||
|
||||
# train the model
|
||||
def train_model(train_dl, model):
|
||||
# define the optimization
|
||||
criterion = CrossEntropyLoss()
|
||||
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
|
||||
# enumerate epochs
|
||||
for epoch in range(500):
|
||||
# enumerate mini batches
|
||||
for i, (inputs, targets) in enumerate(train_dl):
|
||||
# clear the gradients
|
||||
optimizer.zero_grad()
|
||||
# compute the model output
|
||||
yhat = model(inputs)
|
||||
# calculate loss
|
||||
loss = criterion(yhat, targets)
|
||||
# credit assignment
|
||||
loss.backward()
|
||||
# update model weights
|
||||
optimizer.step()
|
||||
|
||||
# evaluate the model
|
||||
def evaluate_model(test_dl, model):
|
||||
predictions, actuals = list(), list()
|
||||
for i, (inputs, targets) in enumerate(test_dl):
|
||||
# evaluate the model on the test set
|
||||
yhat = model(inputs)
|
||||
# retrieve numpy array
|
||||
yhat = yhat.detach().numpy()
|
||||
actual = targets.numpy()
|
||||
# convert to class labels
|
||||
yhat = argmax(yhat, axis=1)
|
||||
# reshape for stacking
|
||||
actual = actual.reshape((len(actual), 1))
|
||||
yhat = yhat.reshape((len(yhat), 1))
|
||||
# store
|
||||
predictions.append(yhat)
|
||||
actuals.append(actual)
|
||||
predictions, actuals = vstack(predictions), vstack(actuals)
|
||||
# calculate accuracy
|
||||
acc = accuracy_score(actuals, predictions)
|
||||
return acc
|
||||
|
||||
# make a class prediction for one row of data
|
||||
def predict(row, model):
|
||||
# convert row to data
|
||||
row = Tensor([row])
|
||||
# make prediction
|
||||
yhat = model(row)
|
||||
# retrieve numpy array
|
||||
yhat = yhat.detach().numpy()
|
||||
return yhat
|
||||
|
||||
# prepare the data
|
||||
path = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv'
|
||||
train_dl, test_dl = prepare_data(path)
|
||||
print(len(train_dl.dataset), len(test_dl.dataset))
|
||||
# define the network
|
||||
model = MLP(4)
|
||||
# train the model
|
||||
train_model(train_dl, model)
|
||||
# evaluate the model
|
||||
acc = evaluate_model(test_dl, model)
|
||||
print('Accuracy: %.3f' % acc)
|
||||
# make a single prediction
|
||||
row = [5.1,3.5,1.4,0.2]
|
||||
yhat = predict(row, model)
|
||||
print('Predicted: %s (class=%d)' % (yhat, argmax(yhat)))
|
|
@ -0,0 +1,43 @@
|
|||
import click
|
||||
from batch import Batch
|
||||
from model.linear import DNN
|
||||
from model.cnn import VGG16, VGG11
|
||||
from data import FashionDataset
|
||||
from utils import Stage
|
||||
import torch
|
||||
|
||||
|
||||
@click.group()
|
||||
def cli():
|
||||
pass
|
||||
|
||||
|
||||
@cli.command()
|
||||
def train():
|
||||
batch_size = 16
|
||||
num_workers = 8
|
||||
|
||||
path = "fashion-mnist_train.csv"
|
||||
trainset = FashionDataset(path=path)
|
||||
|
||||
trainloader = torch.utils.data.DataLoader(
|
||||
trainset, batch_size=batch_size, shuffle=False, num_workers=num_workers
|
||||
)
|
||||
model = VGG11(in_channels=1, num_classes=10)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=2e-4)
|
||||
batch = Batch(
|
||||
stage=Stage.TRAIN,
|
||||
model=model,
|
||||
device=torch.device("cpu"),
|
||||
loader=trainloader,
|
||||
criterion=criterion,
|
||||
optimizer=optimizer,
|
||||
)
|
||||
batch.run(
|
||||
"Run run run run. Run run run away. Oh Oh oH OHHHHHHH yayayayayayayayaya! - David Byrne"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cli()
|
Loading…
Reference in New Issue